HOMEWORK 3

DUE 28 APRIL 2017

- **1.** Prove that $\lim_{\longrightarrow} \frac{1}{p^i} \mathbb{Z} = \mathbb{Z} \left[\frac{1}{p} \right]$.
- 2. Atiyah-MacDonald, Chapter 2, Exercise 20.
- **3.** Let p be a prime number. For $n \geq m$ let $f_{nm} : \mathbb{Z}/p^n\mathbb{Z} \longrightarrow \mathbb{Z}/p^m\mathbb{Z}$ be the canonical projection, i.e. $f_{nm}(a \mod p^n) = a \mod p^m$.
 - (a) Show that $\{\mathbb{Z}/p^n\mathbb{Z}\}$ with homomorphisms f_{nm} forms an inverse system of commutative rings. Let \mathbb{Z}_p denote $\lim_{n \to \infty} \mathbb{Z}/p^n\mathbb{Z}$
 - (b) Find the canonical image of \mathbb{Z} in \mathbb{Z}_p and show that \mathbb{Z}_p is an integral domain.
 - (c) Show that \mathbb{Z}_p is a local ring and an principal ideal domain.

The ring \mathbb{Z}_p is called the ring of *p*-adic integers.

4. Let p be a prime and let R be the set of formal power series in p:

$$R = \left\{ \sum_{n=0}^{\infty} a_n p^n ; a_n = 0, 1, \dots, p - 1 \right\}.$$

- (a) Show that R is a commutative ring under the addition and multiplication of power series (do show that multiplication makes sense!).
- (b) Show that \mathbb{Z}_p is naturally isomorphic to R.
- **5.** Let \mathbb{N} be the set of positive integers ordered by divisibility. Observe that

$$\{\mathbb{Z}/n\mathbb{Z}\}_{n\in\mathbb{N}}$$

forms an inverse system of commutative rings with the canonical homomorphisms $\mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z}$ for $m \mid n$. Let $\hat{\mathbb{Z}} = \lim \mathbb{Z}/n\mathbb{Z}$. Show that

$$\hat{\mathbb{Z}} \cong \prod_{p \text{ prime}} \mathbb{Z}_p.$$

- **6.** Let p be a prime and let \mathbb{F}_p be a field with p elements.
 - (a) Show that \mathbb{F}_p is isomorphic to $\mathbb{Z}/p\mathbb{Z}$. (Use the shortest proof possible...)
 - (b) Let K/\mathbb{F}_p be a finite extension. Then K is a finite dimensional vector space over \mathbb{F}_p and hence has $q = p^n$ elements for some n. Show that K/\mathbb{F}_p is Galois with cyclic Galois

group generated by

$$\phi: K \longrightarrow K, \quad x \mapsto x^p.$$

As you probably already know, ϕ is called the p-th power Frobenius.

- (c) Show that for each $n \geq 1$, there is exactly one field K with $\mathbb{F}_p \subseteq K \subseteq \overline{\mathbb{F}}_p$ of degree n over \mathbb{F}_p .
- (d) Show that $\operatorname{Gal}\left(\bar{\mathbb{F}}_p/\mathbb{F}_p\right) \cong \hat{\mathbb{Z}}$. (It is also true that $\operatorname{Gal}\left(\bar{\mathbb{F}}_q/\mathbb{F}_q\right) \cong \hat{\mathbb{Z}}$ with the same proof.)
- 7. Let p be a prime number. For any integer $a \neq 0$ we denote $v_p(a) = n \iff p^n$ is the highest power of p dividing a. (Sometimes this is extended to include $v_p(0) = \infty$.)
 - (a) For $a \in \mathbb{Z}$, define the *p-adic absolute value* of a to be $|a|_p = \frac{1}{p^{v_p(a)}}$ if $a \neq 0$ and $|0|_p = 0$. Show that

$$|a+b|_p \le \max\{|a|_p, |b|_p\}$$

for all $a, b \in \mathbb{Z}$. Under what conditions is this an equality?

(b) Show that

$$(a,b) \mapsto |a-b|_p, \quad a,b \in \mathbb{Z},$$

defines a metric on \mathbb{Z} which makes \mathbb{Z} into a topological group (that is, with respect to this topology, addition $+: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z}$ is continuous).

- (c) Extend the absolute value $|\cdot|_p$ from \mathbb{Z} to one on the p-adic integers \mathbb{Z}_p in a natural way so that, in the topology on \mathbb{Z}_p every Cauchy sequence in \mathbb{Z} converges in \mathbb{Z}_p .
- (d) Let $\{a_i\}_{i=1}^{\infty}$ be an infinite sequence in \mathbb{Z}_p . Under which conditions will the series $\sum a_i$ converge?