HOMEWORK 1

DUE 8 APRIL 2016

1. Let \mathcal{C} be a category, and let U_{1} and U_{2} be objects in \mathcal{C}. Suppose U_{1} and U_{2} are both universally attracting. Show that there is a unique isomorphism $i: U_{1} \longrightarrow U_{2}$. (For future reference, the same is true if they're both universally repelling, with the same proof.)
2. Remember that by "ring" we mean "ring with 1 ." Let \mathcal{R} be the category of rings. If R_{1} and R_{2} are rings, then let $R_{1} \times R_{2}$ be their set-theoretic product, which can also be given the natural structure of a ring.
(a) Show that $R_{1} \times R_{2}$ is the product of R_{1} and R_{2} in \mathcal{R}.
(b) Show that $R_{1} \times R_{2} \simeq R_{1} \oplus R_{2}$ is not the coproduct of R_{1} and R_{2} in \mathcal{R}.

Note: We'll see later that coproducts do exist in the category $\mathcal{R}_{\text {comm }}$ of commutative rings; they're called tensor products.
3. Let \mathcal{C} be a category. Let X, Y, S be objects in \mathcal{C} and $f: X \longrightarrow S, g: Y \longrightarrow S$ be morphisms in \mathcal{C}. A fiber product of f and g in \mathcal{C} (or by abuse of terminology, fiber product of X and Y over S) is an object Z in \mathcal{C} together with morphisms $\pi_{1}: Z \longrightarrow X$ and $\pi_{2}: Z \longrightarrow Y$ such that
(i) $g \circ \pi_{2}=f \circ \pi_{1}$;
(ii) for any object A in \mathcal{C} and any morphisms $q_{1}: A \longrightarrow X, q_{2}: A \longrightarrow Y$ such that $g \circ q_{2}=f \circ q_{1}$ there exists a unique morphism $u: A \longrightarrow Z$ such that the diagram

is commutative.

Show that, if it exists, the fiber product Z of f and g is unique up to isomorphism. (The fiber product is denoted $X \times_{S} Y$.)
4. Let B be an abelian group. Let F_{B} be the functor from the category of abelian groups to itself defined for an abelian group A by

$$
F_{B}(A)=\operatorname{Hom}(B, A)=\{f: B \longrightarrow A ; f \text { is a group homomorphism }\}
$$

(a) Show that F_{B} is a covariant functor.
(b) Show that F_{B} is left exact.
(c) Find a nontrivial abelian group B such that F_{B} is exact.
(d) Is F_{B} always exact? Prove or find a counterexample.
5. Let G be a group. Denote $\mathbb{Z}[G]$ the free abelian group (or free \mathbb{Z}-module) on the set G. That is,
$\mathbb{Z}[G]=\left\{\sum_{\sigma \in G} a_{\sigma} \sigma ; a_{\sigma} \in \mathbb{Z} \forall \sigma \in G\right.$ and all but finitely many a_{σ} 's are equal to zero $\}$
with the natural addition.
(a) Show that $\mathbb{Z}[G]$ becomes a ring with the multiplication

$$
\left(\sum_{\sigma \in G} a_{\sigma} \sigma\right) \cdot\left(\sum_{\tau \in G} b_{\tau} \tau\right)=\sum_{\sigma \in G}\left(\sum_{\sigma^{\prime} \tau=\sigma} a_{\sigma^{\prime}} b_{\tau}\right) \sigma .
$$

(Do show that the multiplication is well-defined.)
(b) What is the multiplicative identity element in this ring?
(c) Show that the set R of finitely supported functions $f: G \longrightarrow \mathbb{Z}$ becomes a ring under the usual function addition and multiplication given by convolution. That is, the elements of R are maps of sets $f: G \longrightarrow \mathbb{Z}$ with the property that $f(\sigma)=0$ for all but finitely many $\sigma \in G$; the addition is given by $(f+g)(\sigma)=f(\sigma)+g(\sigma)$ for all $\sigma \in G$; and the multiplication is given by

$$
(f * g)(\sigma)=\sum_{\tau \in G} f(\tau) g\left(\tau^{-1} \sigma\right)
$$

(d) Show that $\mathbb{Z}[G]$ is naturally isomorphic to R (as rings).

