1. Compute the double integral

$$
\iint_{D}\left(x^{2}+y^{2}\right) d A
$$

where D is the annulus between circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=1 / 4$.
Solution. The domain D is described by the inequalities

$$
0 \leq \theta \leq 2 \pi, \quad \frac{1}{2} \leq r \leq 1
$$

The function $f(x, y)=x^{2}+y^{2}$ in polar coordinates is

$$
f(x, y)=x^{2}+y^{2}=(r \cos \theta)^{2}+(r \sin \theta)^{2}=r^{2}
$$

Using change of variables in polar coordinates gives

$$
\begin{aligned}
\iint_{D}\left(x^{2}+y^{2}\right) d A & =\int_{0}^{2 \pi} \int_{\frac{1}{2}}^{1}\left(r^{2}\right) r d r d \theta \\
& =\left.\int_{0}^{2 \pi} \frac{r^{4}}{4}\right|_{r=\frac{1}{2}} ^{1} d \theta \\
& =\int_{0}^{2 \pi} \frac{15}{64} d \theta \\
& =\frac{15}{64}(2 \pi) \\
& =\frac{15}{32} \pi
\end{aligned}
$$

