1. Compute the double integral

$$
\iint_{D} \frac{y}{x^{2}+y^{2}} d A
$$

where D is the right half of the unit disk (i.e. the half of the unit disk $x^{2}+y^{2} \leq 1$ where $x \geq 0$).

Solution. The domain D is described by the inequalities

$$
-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \quad 0 \leq r \leq 1
$$

The function $f(x, y)=\frac{y}{x^{2}+y^{2}}$ in polar coordinates is

$$
f(x, y)=\frac{y}{x^{2}+y^{2}}=\frac{r \sin \theta}{(r \cos \theta)^{2}+(r \sin \theta)^{2}}=\frac{r \sin \theta}{r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=\frac{\sin \theta}{r}
$$

Using change of variables in polar coordinates gives

$$
\begin{aligned}
\iint_{D} \frac{y}{x^{2}+y^{2}} d A & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{1}\left(\frac{\sin \theta}{r}\right) r d r d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{1} \sin \theta d r d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin \theta\left(\int_{0}^{1} 1 d r\right) d \theta \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin \theta d \theta \\
& =\left.(-\cos \theta)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}} \\
& =0
\end{aligned}
$$

Alternate solution. The double integral is the signed volume of the region D between the graph of $f(x, y)=\frac{y}{x^{2}+y^{2}}$ and the $x y$-plane. Note that $f(x, y)$ takes opposite values at (x, y) and $(x,-y)$:

$$
f(x,-y)=\frac{-y}{x^{2}+(-y)^{2}}=-\frac{y}{x^{2}+y^{2}}=-f(x, y) .
$$

By symmetry, the signed volume of the region below the $x y$-plane where $y \leq 0$ cancels with the signed volume of the region above the $x y$-plane where $y \geq 0$. Thus

$$
\iint_{D} \frac{y}{x^{2}+y^{2}} d A=0
$$

