1. Find the equation of the plane through the point $P=(1,2,3)$ with normal vector $\vec{N}=$ $\langle 1,-2,4\rangle$.

Solution. Let $P^{\prime}=\langle x, y, z\rangle$ be a point on the plane. Then $\overrightarrow{P P^{\prime}}=\langle x-1, y-2, z-3\rangle$ is a vector in the plane, so it is orthogonal to \vec{N}, the normal vector. That is, $\vec{N} \cdot \overrightarrow{P P^{\prime}}=0$, and expanding, we get

$$
\begin{aligned}
0 & =\vec{N} \cdot \overrightarrow{P P^{\prime}} \\
& =\langle 1,-2,4\rangle \cdot\langle x-1, y-2, z-3\rangle \\
& =x-2 y+4 z-9 .
\end{aligned}
$$

So the desired equation of the plane is $x-2 y+4 z=9$.

