Solutions for Quiz 1, Section A01

Let $A=(a, 1), B=(2,2), C=(4,-1)$, and $D=(0, b)$. Find the values of a and b for which $A B C D$ is a parallelogram.

Solution: For $A B C D$ to be a parallelogram, $\overrightarrow{A B}$ must equal $\overrightarrow{D C}$. By plugging in the values of the vectors we can solve:

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{D C} \\
\langle 2-a, 2-1\rangle & =\langle 4-0,-1-b\rangle \\
\langle 2-a, 1\rangle & =\langle 4,-1-b\rangle
\end{aligned}
$$

So $2-a=4$ and $-1-b=1$, so $a=-2$ and $b=-2$.

Another solution method: For $A B C D$ to be a parallelogram, the intersection of the diagonals must also be the midpoint of the diagonals. This means that the midpoint of $\overline{A B}$ is the same as the midpoint of $\overline{B D}$. So:

$$
\begin{aligned}
\left(\frac{4+a}{2}, \frac{-1+1}{2}\right) & =\left(\frac{2+0}{2}, \frac{2+b}{2}\right) \\
\left(\frac{4+a}{2}, 0\right) & =\left(1, \frac{2+b}{2}\right)
\end{aligned}
$$

Looking at the x-coordinates:

$$
\begin{aligned}
\frac{4+a}{2} & =1 \\
4+a & =2 \\
a & =-2
\end{aligned}
$$

Looking at the y-coordinates:

$$
\begin{aligned}
& 0=\frac{2+b}{2} \\
& 0=2+b \\
& b=-2
\end{aligned}
$$

