PRACTICE PROBLEMS

DISCLAIMER: The actual midterm questions may have nothing to do with the ones below.

Justify all your work.

- 1. Decompose into primes in $\mathbb{Z}[i]$ the following gaussian integers.
 - (a) 225;
 - (b) 9 + 3i.
- 2. Prove that a gaussian integer is divisible by $\alpha = 1 + i$ if and only if its norm is even.
- 3. Find a positive integer that can be written as a sum of squares in 3 ways. It is not enough to exhibit the 3 ways to write it as a square, you have to explain how you found it.
- 4. Find all the integer solutions (or show that none exist) to the diophantine equation

$$x^2 - 25y^2 = 39.$$

- 5. Compute the continued fraction of the following numbers.
 - (a) $\frac{1 \pm \sqrt{3}}{2}$: (b) $\sqrt{6}$.
- 6. Represent as $\frac{r+s\sqrt{d}}{t}$ the following continued fractions.
 - (a) $[3, \bar{5}];$
 - (b) $[1, 3, \overline{5}].$
- 7. (a) Find all integer solutions, or prove that no such solutions exist, to x² 7y² = -1.
 (b) Find all integer solutions, or prove that no such solutions exist, to x² 7y² = 1.
- 8. (Extra credit) If p is a prime, show that Pell's equation

$$x^2 - py^2 = -1$$

has integer solutions if and only if p = 2 or $p \equiv 1 \pmod{4}$. Hint: Consider a + 1 and a - 1 where (a, b) is a solution to $a^2 - pb^2 = 1$.