PRACTICE PROBLEMS

DISCLAIMER: The actual midterm questions may have nothing to do with the ones below.

Justify all your work.

1. Decompose into primes in $\mathbb{Z}[i]$ the following gaussian integers.
(a) 225 ;
(b) $9+3 i$.
2. Prove that a gaussian integer is divisible by $\alpha=1+i$ if and only if its norm is even.
3. Find a positive integer that can be written as a sum of squares in 3 ways. It is not enough to exhibit the 3 ways to write it as a square, you have to explain how you found it.
4. Find all the integer solutions (or show that none exist) to the diophantine equation

$$
x^{2}-25 y^{2}=39 .
$$

5. Compute the continued fraction of the following numbers.
(a) $\frac{1 \pm \sqrt{3}}{2}$:
(b) $\sqrt{6}$.
6. Represent as $\frac{r+s \sqrt{d}}{t}$ the following continued fractions.
(a) $[3, \overline{5}]$;
(b) $[1,3, \overline{5}]$.
7. (a) Find all integer solutions, or prove that no such solutions exist, to $x^{2}-7 y^{2}=-1$.
(b) Find all integer solutions, or prove that no such solutions exist, to $x^{2}-7 y^{2}=1$.
8. (Extra credit) If p is a prime, show that Pell's equation

$$
x^{2}-p y^{2}=-1
$$

has integer solutions if and only if $p=2$ or $p \equiv 1(\bmod 4)$.
Hint: Consider $a+1$ and $a-1$ where (a, b) is a solution to $a^{2}-p b^{2}=1$.

