PRACTICE PROBLEMS

DISCLAIMER: The actual final exam questions may have nothing to do with the ones below.

Justify all your work.

- 1. Find the 7th root of 31 modulo 33.
- 2. Find the greatest common divisor of the gaussian integers 17 + 71i and 6 69i.
- 3. Determine which of the following numbers can this be written as a sum of two squares. You do not need to exhibit a sum of squares equal to each number, but you do need to give your reasoning.

245; 1245; 9000000000; 3333333333.

4. Compute the continued fraction of the following numbers.

(a)
$$\frac{1 \pm \sqrt{3}}{2}$$
:
(b) $\sqrt{6}$.

- 5. Represent as $\frac{r+s\sqrt{d}}{t}$ the following continued fractions.
 - (a) $[2,\bar{5}];$
 - (b) $[-1, 2, \overline{5}].$

6. Find all integer solutions, or prove that no such solutions exist, to $x^2 - 6y^2 = -1$.

7. Compute the following Jacobi symbols.

(a)
$$\left(\frac{977}{1001}\right)$$

(b) $\left(\frac{248}{563}\right)$

- 8. (a) Use quadratic reciprocity to determine the congruence classes in $(\mathbb{Z}/84\mathbb{Z})^{\times}$ with $\left(\frac{-21}{p}\right) = 1$.
 - (b) Determine for which congruences classes modulo 84, the prime $p \mid a^2 + 21b^2$ for some relatively prime integers a, b. The answer should be a list, e.g. $p \mid a^2 + 21b^2$ for a, b relatively prime if and only if $p \equiv \dots \pmod{84}$.
- 9. Find all the integer solutions (or show that none exist) to the diophantine equation

$$x^2 + 3y^2 = z^2.$$

10. Prove that a prime number p can be written as $p = a^2 + 2b^2$ for some integers a, b if and only if p = 2 or $p \equiv 1$ or 3 (mod 8).

Note: This practice test has one extra problem with respect to what you can expect on the final exam.