PRACTICE PROBLEMS

DISCLAIMER: The actual final exam questions may have nothing to do with the ones below.

Justify all your work.

1. Find the 7 th root of 31 modulo 33 .
2. Find the greatest common divisor of the gaussian integers $17+71 i$ and $6-69 i$.
3. Determine which of the following numbers can this be written as a sum of two squares. You do not need to exhibit a sum of squares equal to each number, but you do need to give your reasoning.

$$
245 ; \quad 1245 ; \quad 900000000000 ; \quad 3333333333 .
$$

4. Compute the continued fraction of the following numbers.
(a) $\frac{1 \pm \sqrt{3}}{2}$:
(b) $\sqrt{6}$.
5. Represent as $\frac{r+s \sqrt{d}}{t}$ the following continued fractions.
(a) $[2, \overline{5}]$;
(b) $[-1,2, \overline{5}]$.
6. Find all integer solutions, or prove that no such solutions exist, to $x^{2}-6 y^{2}=-1$.
7. Compute the following Jacobi symbols.
(a) $\left(\frac{977}{1001}\right)$
(b) $\left(\frac{248}{563}\right)$
8. (a) Use quadratic reciprocity to determine the congruence classes in $(\mathbb{Z} / 84 \mathbb{Z})^{\times}$with $\left(\frac{-21}{p}\right)=1$.
(b) Determine for which congruences classes modulo 84 , the prime $p \mid a^{2}+21 b^{2}$ for some relatively prime integers a, b. The answer should be a list, e.g. $p \mid a^{2}+21 b^{2}$ for a, b relatively prime if and only if $p \equiv \ldots(\bmod 84)$.
9. Find all the integer solutions (or show that none exist) to the diophantine equation

$$
x^{2}+3 y^{2}=z^{2} .
$$

10. Prove that a prime number p can be written as $p=a^{2}+2 b^{2}$ for some integers a, b if and only if $p=2$ or $p \equiv 1$ or $3(\bmod 8)$.

Note: This practice test has one extra problem with respect to what you can expect on the final exam.

