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1 Review

1.1 Prime numbers

A prime number p has the following properties:

• p has no other divisors than 1 and p;

• p | ab =⇒ p | a or p | b.

There are infinitely many primes. Every positive integer can be written uniquely as a
product of primes.

1.2 Euclidean algorithm

The algorithm is used to find the greatest common divisor d = (a, b) of two positive integers
a and b. It also can be used to find integers r, s such that

d = ar + bs.

1.3 Congruences

Definition. We say that two integers a and b are congruent modulo some integer n and
write a ≡ b (mod n) if n | a − b. (That is to say, a and b give the same remainder when
divided by n.)

Here a few properties of congruences:

• a ≡ a (mod n)

• a ≡ b (mod n) ⇐⇒ b ≡ a (mod n)

• a ≡ b (mod n) and b ≡ c (mod n) =⇒ a ≡ c (mod n)

• a ≡ b (mod n) and c ≡ d (mod n) =⇒ a± c ≡ b± d (mod n), ac ≡ bd (mod n).

• (a, n) = d and ab ≡ ac (mod n) =⇒ b ≡ c (mod n
d
).

• Given integers a and n, the equation ax ≡ b (mod n) has solutions if (a, n) | b. There-
fore it has solutions for all b iff (a, n) = 1. That is to say, if there exists an integer c
such that ac ≡ 1 (mod n). If such a c exists, it is unique modulo n, and the solution
is x = bc (mod n) is also unique modulo n.

• aφ(n) ≡ 1 (mod n).
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In addition to all these similarities to normal arithmetic operations (addition, subtraction,
multiplication, division), there are similarities to linear algebra as well. For instance, the
system of linear congruences

a11x1 + . . .+ a1rxr ≡ b1 (mod n)
...

ar1x1 + . . .+ arrxr ≡ br (mod n)

has unique solution (mod n) iff det(aij) and n are coprime.

Theorem 1.1 (Chinese Remainder Theorem). Assume that m1, . . . ,mr are positive integer
with the property that any two of them are relatively prime. Then, for any a1, . . . , ar ∈ Z,
the system of equations 

x ≡ a1 (mod m1)
...

x ≡ ar (mod mr)

has a unique solution (mod m1 . . .mr).

1.4 Groups

Definition. A group G is a set endowed with an operation ◦ : G × G → G with following
properties.

(i) x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ G (associativity).

(ii) There exists an element e ∈ G (called the unit of the group) such that x ◦ e = e ◦x = x
for all x ∈ G.

(iii) For each x ∈ G there exists an element x−1 ∈ G (the inverse of x) such that

x ◦ x−1 = x−1 ◦ x = e.

Definition. We say that a group G is abelian (commutative) if x◦y = y ◦x for all x, y ∈ G.
Theorem 1.2 (Lagrange). In a finite group G the order of every element is a divisor of the
order of the group #G. In particular

x#G = e for all x ∈ G.

Two particular cases are the following result in modular arithmetic.

Theorem 1.3 (Fermat). If p is a prime and a an integer not divisible by p, then

ap−1 ≡ 1 (mod p).

Theorem 1.4 (Euler). If a and n are relatively prime nonzero integers, then

aφ(n) ≡ 1 (mod n).
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1.5 Primitive roots

A primitive root modulo n is a generator of the group Un of the units modulo n. That is, a
is a primitive root modulo n if and only if its order in Un is exactly φ(n), i.e. φ(n) is the
smallest positive integer m such that

am ≡ 1 (mod n).

2 Powers and roots in modular arithmetic

To calculate powers modulo n one can use Euler’s theorem. For instance, let us compute
742 (mod 11). We will use the fact that 710 ≡ 1 (mod 11).

742 (mod 11) = 74·10+2 (mod 11) = (710)4·72 (mod 11) = 72 (mod 11) = 5 (mod 11).

The above works for any integer n > 1. For roots, we will restrict ourselves to computing
roots modulo primes.

To compute roots modulo a prime p, one could use a primitive root.

Example 2.1. Find a third root of 5 modulo 11.

That is, we want to find x such that

x3 ≡ 5 (mod 11).

We know that 2 is a primitive root modulo 11. Indeed, here’s a table of the powers of 2
modulo 11.

n 1 2 3 4 5 6 7 8 9 10

2n (mod 11) 2 4 8 5 10 9 7 3 6 1

We see that 5 = 24 (mod 11). Thus we want to solve

x3 ≡ 24 (mod 11).

Since 2 is a primitive root, we know that x ≡ 2y (mod 11) for some y. Thus our equation
becomes

23y ≡ 24 (mod 11) ⇐⇒ 23y−4 ≡ 1 (mod 11) ⇐⇒ 3y − 4 ≡ 0 (mod 10)

⇐⇒ 3y ≡ 4 (mod 10) ⇐⇒ y ≡ 8 (mod 10).

We managed to complete the last step because (3, 10) = 1 so 3 has an inverse modulo 10.
Thus our solution is
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x ≡ 28 (mod 11) ≡ 3 (mod 11).

The above works for any integer n > 1. Namely, given (a, n) = 1 we would like to find x
such that

xk ≡ a (mod n).

If we have a primitive root g modulo n we express a ≡ gb (mod n) and x ≡ gy (mod n) and
our equatioon becomes

gky ≡ gb (mod n) ⇐⇒ ky ≡ (mod φ(n)).

If k and φ(n) are relatively prime, then we can find such a y which in turn leads us to x. In
particular, we observe the following.

Remark 2.2. If k and φ(n) are relatively prime, then every integer a coprime to n has a
kth root modulo n.

However, primitive roots are not easy to find, especially when we deal with large numbers.
And in addition to finding a primitive root, the above method also requires another nontrivial
computation, namely we have to find b such that a ≡ gb (mod n). If we restrict our attention
to roots modulo primes, one can find a shortcut using Fermat’s theorem.

Example 2.3. Find the fifth root of 2 modulo 17.

By Fermat’s theorem we know that

216 ≡ 1 (mod 17)

and
217 ≡ 2 (mod 17).

We can multiply these two relations and get that

233 ≡ 2 (mod 17).

Multiply again by 216 and get

249 ≡ 2 (mod 17).

We will repeat the operation of multiplying by 216 until we get an exponent that is a
multiple of 5. Fortunately, we do not have to go far, as the next iteration yields

265 ≡ 2 (mod 17).

Thus
2 ≡ 265 (mod 17) ≡ 25·13 (mod 17) ≡ (213)5 (mod 17)

, so x ≡ 213 (mod 17). In order to compute this, we write 13 as a sum of powers of 2 (since
squaring saves time), i.e. 13 = 8 + 4 + 1.
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We have
21 ≡ 2 (mod 17), 22 ≡ 4 (mod 17),

24 ≡ 16 (mod 17) ≡ −1 (mod 17), 28 ≡ 1 (mod 17).

Thus,

213 ≡ 28 · 24 · 21 (mod 17) ≡ 1 · (−1) · 2 (mod 17) ≡ 15 (mod 17)

is a fifth root of 2 modulo 17.
In general, suppose that we want to compute the kth root of a number a 6≡ 0 (mod p)

for some prime p. Fermat’s theorem tells us that ap−1 ≡ 1 (mod p), so we can write a as a
power of itself by multiplying it by ap−1 over and over again:

a ≡ ap ≡ a2p−1 ≡ a3p−2 ≡ . . . (mod p),

i.e.
a ≡ a`(p−1)+1 (mod p) for all `.

If we can find m such that mk = `(p − 1) + 1 for some `, then we would get a ≡ amk

(mod p), so x ≡ am (mod p) is a kth root of a modulo p.
Note that we can always find such an m provided that (k, p − 1) = 1. In fact, in this

case, we can find m via the Euclidean algorithm.

How to find the kth root of a modulo p

• Check that p is a prime, p - a and that k is relatively prime to p − 1. If any of these
conditions fails, the process will not work. In fact, the kth root might not exist.

• Use the Euclidean algorithm to find positive integers m and ` such that

mk = `(p− 1) + 1.

• Then (am)k ≡ a`(p−1)+1 ≡ a (mod p), so am is a kth root of a modulo p.

• Evaluate x ≡ am (mod p).

• Check! Calculate xk (mod p) and verify that you indeed get a.

It would be a good exercise to figure out how to modify this algorithm for modular
arithmetic modulo some general positive integer n > 1 instead of a prime p.
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3 Classical crypto systems

3.1 Caesar shifts

Named after Julius Caesar, these codes require a “shift” of the letters. For instance, a Caesar
shift of +1 takes

A→ B → C → · · · → Z → A.

For instance, in this encoding,

THIS CODE IS DUMB

becomes
UIJT DPEF JT EVNC.

A Caesar shift of +3 would take A→ D, B → E, and so forth. A shift of −1 would take
A→ Z → Y → · · · → C → B → A. Such a code is easy to break by trying various shifts on
just the first few letters until we get something that makes sense.

An even simpler shift would just assign each letter a number encoding its position in the
alphabet. That is, A→ 1, B → 2, . . . , Z → 26. So the message

EVEN WORSE

becomes
522514 231518195.

Needless to say, this is also easy to decode.

3.2 Permutation codes

A version of this code was used by the Spartans. The idea is to use a rectangle of given
dimension (m×n), and write the message horizontally in the rectangle, but read it vertically.

Let us say that we want to encode the message

IT IS THURSDAY AND THE WEATHER IS BEAUTIFUL

using a 3× 5 permutation code. We write the beginning of the message in a rectangle of the
given dimension

I T I S T
H U R S D
A Y A N D

and then we continue with another rectangle and so on:
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T H E W E
A T H E R
I S B E A

. . .

The encoded message is read vertically:

IHATUYIRASSNTDDTAIHTSEHBWEEERA . . .

The way to break this code is to read every second letter, then every third letter until
the message begins to make sense. For instance, reading every second letter above gives

IAUIA . . .

and we need not go any further as this is gibberish. But when we try every third letter we
get

ITIST . . .

and by now we are pretty confident that this is the key and we can go on to decipher the
rest and recover the original text.

3.3 Vigenère code

Named after its inventor, Blaise de Vigenère, this cypher was considered unbreakable at the
time. Indeed, it took centuries before an effective way of cracking it was discovered. It is a
shift code, but with a twist. Namely, one chooses a key word, e.g. “TODAY”. To encode
the message

IT IS THURSDAY

one adds TODAYTODAYTODAY. . . to it modulo 26. Namely,

I T I S T H U R S D A Y
+ T O D A Y T O D A Y T O

which becomes

9 20 9 19 20 8 21 18 19 4 1 25
+ 20 15 4 1 25 20 15 4 1 25 20 15

3 9 13 20 19 2 10 22 20 3 21 14 (mod 26)
Thus, the encoding reads

CIMTSBJVTCUO.

To decode, one uses the key word again. That, is converts CIMTSBJVTCUO in numbers
up to 26 and subtracts TODAY from it.

3 9 13 20 19 2 10 22 20 3 21 14
- 20 15 4 1 25 20 15 4 1 25 20 15

9 20 9 19 20 8 21 18 19 4 1 25 (mod 26)
The Vigenère code is harder to crack with the usual methods for cracking substitution

codes. Since the letter E may be encoded in five different ways depending on where it appears
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in the message, one cannot establish which symbol represents E by simply identifying the
symbol which appears most often. But given a long enough message one can still profit by
the same kind of frequency analysis. One would have to look at every other letter, then
every 3rd letter, every 4th letter and so on and chart the frequency of the symbols. In our
example above, we would see little variation in the frequency of the various symbols until we
look at every 5th letter (the length of the key word). Then we would see dramatic changes in
the frequencies. Once we have the length of the key word, we can perform the old frequency
analysis taken this information into account.

4 More crypto systems

In order to use any mathematical encryption scheme, one must first find a universal way of
encoding text into numbers. The first instance we saw of this was the one were each letter
was assigned a number encoding its position in the Latin alphabet (A → 1, B → 2, . . .). In
order to use computers, it is convenient to view keys, plaintexts, and ciphertexts as numbers
and to write those numbers in binary form. An encoding scheme is assumed to be entirely
public knowledge and used by everyone for the same purposes. One such example is the
ASCII code.

Using ASCII, a text may be viewed as a sequence of binary blocks, where each block
consists of 8 bits, i.e., of a sequence of eight ones and zeros. A block of 8 bits is called a byte.
For human comprehension, a byte is often written as a decimal number between 0 and 255.
The full table of values can be found at http://www.ascii-code.com/, but for our purposes
we will only need the printable code chart from http://en.wikipedia.org/wiki/ASCII.
Here are a few examples

Character Decimal Binary Character Decimal Binary
32 00100000 0 48 00110000

( 40 00101000 1 49 00110001

) 41 00101001
...

, 44 00101100 9 57 00111001
. 46 00101110
= 61 00111101

and

Character Decimal Binary Character Decimal Binary
A 65 01000001 a 97 01100001
B 66 01000010 b 98 01100010
...

...
Z 90 01011010 z 122 01111010

Once we have encoded the text into a number (or series of numbers), then we can proceed
to talk about encryption. In general, one chooses a key k and for that we define an encryption
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function ek that transforms (plaintext) messages into cyphertext (i.e.ek(m) = c for a message
m and a cyphertext c) and a decryption function dk that takes cyphertexts and decrypts
them into plaintext messages. From now on, we will use m to denote a plaintext message
and c a cyphertext. So ek(m) = c and dk(c) = m are inverse functions.

Multiplication in modular arithmetic

One simple encryption function comes directly from modular arithmetic. Let p be a prime
(large!, i.e. > 2100) and we will choose our keys k, plaintexts m and cyphertexts c from the
set

{0, 1, . . . , p− 1}.

The encryption function will be ek(m) = km (mod p) and decryption dk(c) = k−1c (mod p).

Affine cypher

is a slight modification of the previous one where the key k = (k1, k2) consists of two numbers
modulo p and

ek(m) = k1m+ k2 (mod p), dk(c) = k−11 (c− k2) (mod p).

Hill cypher

This is a variation of the affine cypher where k1 is an invertible n × n matrix with entries
modulo p and k2,m, c are n vectors modulo p. The formulas are the same.

5 Public key cryptography

All the codes mentioned before are symmetric codes, where both for encryption and decryp-
tion one needs the same key k. The problem is that both the sender and recipient (typically
one calls them Alice and Bob) need to have the same key. But in public key cryptography,
the two parties usually have never met (you and your bank or Amazon, etc.), they communi-
cate only over the internet and they have to assume that someone (usually called Eve) could
eavesdrop on their whole communication. So another system is necessary, one that ensures
that Alice and Bob can communicate securely even Eve can see their whole correspondence.
The first solution to this seemingly impossible task was proposed by Diffie and Hellman and
is based on the so-called discrete log problem.

5.1 Discrete logarithm problem

The problem is simple to state. Given a (large) prime p, a primitive root g modulo p and
a 6≡ 0(mod p), find x such that a ≡ gx(mod p). We know that x exists, but if p is large it
is very hard to find x. Basically, as soon as the brute force approach (compute all powers
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of g until you find a among them) becomes unmanageable for a computer, the problem is
unsolvable.

If we denote x = logg(a) then this “discrete” log function has the same properties as the
usual logarithm, e.g.

logg(1) = 0, logg(ab) = logg(a) + logg(b).

5.2 Diffie-Hellman key exchange

The Diffie-Hellman key exchange algorithm solves the following dilemma. Alice and Bob want
to share a secret key for use in a symmetric cipher, but their only means of communication
is insecure. Every piece of information that they exchange is observed by their adversary
Eve.

Step 1 (public) The first step is for Alice and Bob to agree on a large prime p and a nonzero
integer g modulo p with larger order in Up For the moment, say g is a primitive root
modulo p. (In practice, it is best if they choose g such that its order in Up is a large
prime.) Alice and Bob make the values of p and g public knowledge; for example, they
might post the values on their web sites, so Eve knows them, too.

Step 2 (private): Alice chooses a(mod p) and Bob chooses b(mod p).

Step 3 (private): Alice computes A ≡ ga(mod p) and Bob computes B ≡ gb(mod p).

Step 4 (public): Alice and Bob exchange the values A and B (Eve can see this).

Step 5 (private) Alice computes Ba(mod p) and Bob computes Ab(mod p). Note that both
these values are equal to k ≡ gab(mod p). This is their shared private key.

Note that if Eve can solve the discrete log problem (i.e. given A and B find a and b)
then she can find k. It is nontrivial, but true, that finding k given A,B, g and p is as hard
as solving DLP.

Example 5.1. Let p = 941 and g = 627 a primitive root in Up. If a = 347 and b = 781 then

A ≡ 627347 ≡ 390 (mod 941) B ≡ 627781 ≡ 691 (mod 941)

so
k ≡ 627347·781 ≡ 470 (mod 941).
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5.3 ElGamal public key crypto system

Although the Diffie-Hellman key exchange algorithm provides a method of publicly sharing
a random secret key, it does not achieve the full goal of being a public key cryptosystem,
since a cryptosystem permits exchange of specific information, not just a random string of
bits. The Elgamal public key encryption algorithm is based on the discrete log problem and
is closely related to Diffie-Hellman key exchange.

Step 1 (public) A trusted party chooses and publishes a large prime p and an element g
modulo p of large (prime) order.

Step 2 (private) Alice chooses a private key 1 ≤ a ≤ p− 1 and computes A ≡ ga(mod p).

Step 3 (public) Alice publishes the public key A.

Step 4 (private) Bob chooses plaintext m and a random element k called ephemeral key.
He will choose a different k each time he wants to send a message. Bob uses Alice’s
public key A and his ephemeral key k to compute

c1 ≡ gk (mod p), c2 ≡ mAk (mod p).

Step 5 (public) Bob sends ciphertext c = (c1, c2) to Alice. (Eve can see this.)

Step 6 Alice decrypts Bob’s message by computing

m ≡ c−a1 c2 (mod p).

5.4 RSA

Named after Ron Rivest, Adi Shamir and Leonard Adleman, this code (or variants of it) is
used everywhere these days: ATMs, online transactions, even when we log in to get email
from a remote location. The system uses a version of the discrete log problem modulo an
integer N = pq for two (large) primes p and q. The key consists of k = (N, e). The encryption
is

ek(m) ≡ me (mod N).

To decrypt we need to be able to recover from a cyphertext c the plaintext m such that
me ≡ c(mod N). That is, given N, c, and e we need to solve

xe ≡ c (mod N).

11



5.4.1 Powers and roots in modular arithmetic revisited

We want to find a way to solve
xk ≡ c (mod n)

for an integer n > 1. We would like a version of the algorithm from Section 2 for finding kth
roots modulo a prime, but in arithmetic modulo an arbitrary integer n > 1. In Section 2 we
based our algorithm on Fermat’s theorem, that is on the structure of Up. Now we will use as
a starting point Fermat’s theorem

aφ(n) ≡ 1 (mod n) for all (a, n) = 1.

That is, we will use the fact that Un is cyclic. For that, we need to start with c ∈ Un, i.e.
c relatively prime to n. Then

c ≡ cφ(n)+1 ≡ c2φ(n)+1 ≡ c3φ(n)+1 ≡ . . . (mod n).

If we find a number of the form `φ(n)+1 that is also a multiple of k then we have `φ(n)+1 =
dk for some d and

c ≡ c`φ(n)+1 ≡ (cd)k.

Thus x ≡ cd(mod n) is a kth power of c modulo n.
Note that such a d exists if and only if k and φ(n) are relatively prime.

How to find the kth root of c modulo n

• Check that n > 1 , (n, c) = 1 and that k is relatively prime to φ(n). If any of these
conditions fails, the process will not work. In fact, the kth root might not exist.

• Use the Euclidean algorithm to find positive integers d and ` such that

dk = `φ(n) + 1.

• Then (cd)k ≡ c`(p−1)+1 ≡ c (mod n), so cd is a kth root of c modulo n.

• Evaluate x ≡ cd (mod n).

• Check! Calculate xk (mod n) and verify that you indeed get c.

5.5 Back to RSA

The RSA public key system works as follows.

Step 1 (key creation, private) Bob chooses secret primes p and q. Computes N = pq. He
also chooses the encryption exponent e that is a positive integer coprime to φ(N) =
(p− 1)(q − 1).
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Step 2 (public) Bob publishes N and e.

Step 3 (private, encryption) Alice chooses the plaintext m ad uses Bob’s public key to
encrypt it. That is, she computes the cyphertext

c ≡ me (mod N).

Step 4 (public) Alice sends ciphertext c to Bob. (Eve can see this.)

Step 5 (private, decryption) Bob decrypts Alice’s message by computing first

d ≡ e−1 (mod φ(N)) ≡ e−1 (mod (p− 1)(q − 1))

and then
m ≡ cd (mod N).

6 Method of descent

The method of descent relies on the fact that positive integers are well-ordered, i.e. any two
can be compared and in any set of positive integers there is a smallest element (this is not
true for integers, or for rational numbers). The first instance of descent that many people
see is the long division. If we want to divide a positive integer a by another positive integer
b, we can successively subtract b from a and obtain the sequence of integers

a > a− b > a− 2b > . . .

Since there are only finitely many integers between a and 0, there exists q such that
a− qb ≥ 0 > a− (q + 1)b and in this case r = a− qb < b.

This is in a nutshell the idea of descent: one starts with a positive integer with some
property, then constructs a smaller positive integer with that same property and so on.
Sometimes the descent works only so far and then the inequalities cease to be correct. In
this case, either the process stops and we found what we were looking for as above; or
one might have to check a certain range of numbers to see that there are no solutions in
that range to the problem at hand. Sometimes one shows that starting with a solution,
we can construct an infinite sequence of smaller and smaller positive integers, leading to a
contradiction.

6.1 Pythagorean triples

We want to find all right triangles with all three sides of integral length. In other words, we
want to solve the diophantine equation

x2 + y2 = z2. (6.1)
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Note that any solution generates a positive solution by changing the sign, hence solving
the equation in Z is equivalent to solving it in Z>0, which is the same as finding all right
triangles with integral sides. We can further reduce the problem to finding solutions with
(x, y, z) = 1, that is we exclude similar triangles. Each such solution will generate infinitely
many solutions (dx, dy, dz) with gcd = d and vice versa.

It is worth noticing that if a prime p divides two of the number x, y, z then it would have
to divide the third one as well. Hence we must have (x, y) = (y, z) = (x, z) = 1.
There is one more observation we can make to simply our problem.

Claim x 6≡ y (mod 2).

Proof. We know that we cannot have x ≡ y ≡ 0 (mod 2) because that force x and y to
not be relatively prime. We are going to argue by contradiction for the other case as well.
Assume that x ≡ y ≡ 1 (mod 2). Then x2 ≡ y2 ≡ 1 (mod 4), and this would mean that
z2 ≡ 2 (mod 4), which is impossible.

Since x and y are interchangeable in our problem, we can assume without loss of generality
that x is odd and y is even. This also implies that z is odd. We can rewrite our equation as

y2 = z2 − x2 = (z − x)(z + x)

and further as (y
2

)2
=
z − x

2
· z + x

2
.

All the fractions above are really positive integers since y is even and x, z are both odd with
z > x. Next we want to use the following observation.
Fact If a, b, c ∈ Z with (a, b) = 1 and ab = c2, then there exist integers a1, b1 such that
a = a21 and b = b21. Clearly a1 and b1 have to be relatively prime as well.

In order to do use this fact, we need to show that gcd

(
z − x

2
,
z + x

2

)
= 1. Assume that

p is a prime that divides both of them. Then p divides both their sum and their difference,
that is it has to divide both x and z. That would imply that p divides y as well, and this
contradicts the fact that (x, y, z) = 1.

Hence the gcd of the two fractions is indeed 1 and there must exist positive integers u
and v with (u, v) = 1 such that

z − x
2

= v2 and
z + x

2
= u2.

This leads to 
x = u2 − v2

y = 2uv

z = u2 + v2.

14



Note that since x and z are odd, we must also have u 6≡ v (mod 2). Also, x > 0 implies
u > v.

In short, we proved that all positive Pythagorean triples are of the form
x = d(u2 − v2)
y = 2duv

z = d(u2 + v2)

where u, v ∈ Z, u > v > 0 and u 6≡ v (mod 2).

6.2 More descent

We want to study the Fermat equation for n = 4,

x4 + y4 = z4. (6.2)

Fermat himself proved that it has no non-trivial solutions (i.e. no integer solutions with
xyz 6= 0). His proof uses again the method of descent.

Assume that x, y, z are positive integers satisfying (6.2). Set d = (x, y, z). Then x = dx1,
y = dy1 and z = dz1 where (x1, y1, z1) = 1 and x1, y1, z1 are also positive integers satisfying
the same equation (6.2). In particular, x21, y

2
1, t1 = z21 is a relatively prime Pythagorean

triple. In particular, x1, y1, t1 are relatively prime positive integers that form a solution to
the equation

X4 + Y 4 = T 2. (6.3)

Note that x1 and y1 are interchangeable, so we can assume without loss of generality that
x1 is odd and y1 is even. It follows from our study of Pythagorean triples (Section 6.1) there
exist integers u > v > 0 such that (u, v) = 1 and u 6≡ v (mod 2) such that

x21 = u2 − v2

y21 = 2uv

t1 = u2 + v2.

.

Since x1 is odd, we have x21 ≡ 1 (mod 4) and therefore u is odd and v is even.
Note that this implies further that (u, 2v) = 1. Since u(2v) = y21 and 2v is even, we have

u = t22 and 2v = 4d2 for some positive relatively prime integers t2 and d, with t2 odd.
We can rewrite the formula for x1 as

x21 + v2 = u2.

Since (u, v) = 1 it follows that x1, v, u is a relatively prime Pythagorean triple with x1 odd
and v even. Applying again the results from Section 6.1, there exist integers a > b > 0 such
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that (a, b) = 1, a 6≡ b (mod 2) and 
x1 = a2 − b2

v = 2ab

u = a2 + b2.

.

Since v = 2ab and 2v = 4d2 it follows that ab = d2. But (a, b) = 1 and therefore
a = x22, b = y22 for some integers x2 > y2 > 0 with (x2, y2) = 1 and x2 6≡ y2 (mod 2).

To recap, we have

u = a2 + b2

a = x22
b = y22
u = t22.

Therefore x2, y2, t2 are relatively prime positive integers that satisfy

x42 + y42 = t22.

But we also have
t2 ≤ t42 = u2 < u2 + v2 = t1.

We proved that if we start with a relatively prime positive solution (x1, y1, t1) to (6.3) we
can produce another relatively prime solution (x2, y2, t2) with 0 < t2 < t1. Applying this fact
over and over again we obtain infinitely many positive solutions (xn, yn, tn) to (6.3) with

0 < . . . < tn < tn−1 < . . . < t1.

This is impossible because there are only finitely many integers between 0 and t1. (In fact,
there are t1 − 1 of them!)

In short, the assumption that we can find a positive solution to (6.2) led to a contradiction,
and that proves that no such solution can exist.

7 Gaussian integers

The Gaussian integers Z[i] = {a+ bi; a, b ∈ Z} form a ring with respect to the usual addition
and multiplication. Furthermore, it is an Euclidean ring with respect to the norm map
N : Z[i]→ R≥0 given by N(x+ iy) = x2 +y2 = |x+ iy|2 = (x+ iy)(x− iy) = (x+ iy)(x+ iy)
where the absolute value is the one on C and the bar denotes the complex conjugate.

The norm map is clearly multiplicative, i.e. N(αβ) = N(α)N(β). Moreover, N(α) =
0 ⇐⇒ α = 0. It also allows us to perform long division and use the Euclidean algorithm to
find the gcd of two elements exactly as in Z.

The norm N gives Z[i] a euclidean ring structure. For more about Euclidean rings, see
Chapter 2 of the textbook.
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Theorem 7.1. For any α, β ∈ Z[i] with β 6= 0 there exist γ, ρ ∈ Z[i] such that α = βγ + ρ
and 0 ≤ N(ρ) < N(β).

Proof. Done in 104A or abstract algebra.

Definition. There is a notion of divisibility in a ring R that mirrors the notion from Z.
Namely, if α, β ∈ R we say that α | β if there exists γ ∈ R such that β = αγ.

7.1 Units in Z[i]

An element x = a + bi ∈ Z[i], a, b ∈ Z is a unit if there exists y = c + di ∈ Z[i] such that
xy = 1. This implies

1 = |x|2|y|2 = (a2 + b2)(c2 + d2)

But a2, b2, c2, d2 are non-negative integers, so we must have

1 = a2 + b2 = c2 + d2.

This can happen only if a2 = 1 and b2 = 0 or a2 = 0 and b2 = 1. In the first case we obtain
a = ±1, b = 0; thus x = ±1. In the second case, we have a = 0, b = ±1; this yields x = ±i.
Since all these four elements are indeed invertible we have proved that

U(Z[i]) = {±1,±i}.

7.2 Primes in Z[i]

An element x ∈ Z[i] is prime if it generates a prime ideal, or equivalently, if whenever we
can write it as a product x = yz of elements y, z ∈ Z[i], one of them has to be a unit, i.e.
y ∈ U(Z[i]) or z ∈ U(Z[i]).

7.3 Rational primes p in Z[i]

If we want to identify which elements of Z[i] are prime, it is natural to start looking at primes
p ∈ Z and ask if they remain prime when we view them as elements of Z[i]. If p = xy with
x = a+ bi, y = c+ di ∈ Z[i] then

p2 = |x|2|y|2 = (a2 + b2)(c2 + d2).

Like before, a2 + b2 and c2 + d2 are non-negative integers. Since p is prime, the integers that
divide p2 are 1, p, p2. Thus there are three possibilities for |x|2 and |y|2 :

1. a2 + b2 = 1 and c2 + d2 = p2;

2. a2 + b2 = p and c2 + d2 = p;
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3. a2 + b2 = p2 and c2 + d2 = 1.

In the first case, a2 + b2 = 1 =⇒ x ∈ U(Z[i]). Similarly, in the third case c2 + d2 =
1 =⇒ y ∈ U(Z[i]).

Therefore we have the following result.

Proposition 7.2. A prime number p ∈ Z fails to be a prime element of Z[i] if and only if
p can be written as the sum of two squares, i.e. p = a2 + b2 for some a, b ∈ Z, a, b > 0.

We also have the following observation.

Lemma 7.3. If a prime number p can be written as the sum of two squares, then p = 2 or
p ≡ 1(mod 4).

Proof. Assume p = a2 + b2 with a, b ∈ Z. We know that a2, b2 ≡ 0, 1(mod 4). Thus a2 + b2 ≡
0, 1, 2(mod 4). Since p is prime, it cannot be divisible by 4. So we have either p ≡ 2(mod 4)
(and in this case p = 2) or p ≡ 1(mod 4).

We would like to prove the converse of this statement. That is, our goal in the next
couple of lectures is to prove the following result formulated by Fermat.

Theorem 7.4 (Fermat). A prime p can be written as the sum of two squares if and only if
p = 2 or p ≡ 1 (mod 4).

Proof. One of the direction is easy. Assume p = a2 + b2. Since a2 and b2 are each either
congruent to 0 or 1 modulo 4, it follows that p ≡ 0, 1 or 2 (mod 4). But let’s not forget that
p is a prime, so it cannot possible be divisible by 4, and the only way it can be ≡ 2 (mod 4)
is for it to equal 2.

The other direction is much harder. It’s clear to do when p = 2, but we also have to
show that any prime p ≡ 1 (mod 4) can be written as the sum of two squares. For that, we
will follow Euler’s proof. It might not be the shortest proof one can write down, but it has
the advantage that it illustrates the concept of descent (which was the idea Fermat used in
his sketch of the proof) and reciprocity that we will encounter again later in the course.

Reciprocity step: A prime p ≡ 1 (mod 4), then it divides N = a2 + b2 with a and b
relatively prime integers.

Descent step: If a prime p divides a number N of the form N = a2+b2, where (a, b) = 1,
then p itself can be written as p = x2 + y2 for some (x, y) = 1.

Clearly the these two claims imply our result.

We are going to deviate from the historical order and prove first the reciprocity step.
(Euler first found the proof for the descent step.)
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7.3.1 Reciprocity step

The reciprocity step follows immediately from the following result.

Lemma 7.5. The equation
x2 ≡ −1 (mod p)

has solutions ⇐⇒ p = 2 or p ≡ 1 (mod 4).

Proof. If p = 2, then x = 1 is a solution.

If p ≡ 1 (mod 4), then 4 | p − 1 = φ(p) and therefore there exists an integer a with
ordp a = 4. This means that a4 ≡ 1 (mod p) and a, a2, a3 6≡ 1 (mod 4). We have

a4 − 1 = (a2 − 1)(a2 + 1) ≡ 0 (mod p).

But a2 − 1 6≡ 0 (mod p), hence a2 ≡ −1 (mod p), and x = a is a solution of our
equation.

If p ≡ 3 (mod 4), assume that x = a is a solution, i.e. a2 ≡ −1 (mod p). Then a4 ≡ 1 (mod p),
so ordp a | 4. But we also know that ordp a | φ(p) = p− 1. Hence ordp a | (p− 1, 4) = 2,
which means that a2 ≡ 1 (mod p). The upshot is that 1 ≡ −1 (mod p), so p | 2. The
only way this will happen is for p = 2, and we reached a contradiction.

7.3.2 Descent step

Fermat’s idea (which he used on a number of other occasions), formalized in this case by
Euler in this case, is to show that if we have a solution to a diophantine equation, then we
can find a “smaller” (in some sense) solution. Iterating this process means that we can find
smaller and smaller positive integers. Hence the process needs to terminate at some point,
or we reach a contradiction.

Lemma 7.6. If N is an integer of the form N = a2+b2 for some (a, b) = 1 and q = x2+y2 is
a prime divisor of N, then there exist relatively prime integers c and d such that N/q = c2+d2.

Proof. First note that since q has no trivial divisors, x and y are forced to be relatively
prime. We have

x2N − a2q = x2(a2 + b2)− a2(x2 + y2) = x2b2 − a2y2 = (xb− ay)(xb+ ay).

Since q | N, it follows that x2N − a2q ≡ 0 (mod q), and so

(xb− ay)(xb+ ay) ≡ 0 (mod q).

Since q is a prime, this can happen only if one of the factors is divisible by q. Since we
can change the sign of a without affecting our theorem, we can assume that q | xb− ay, that
is xb− ay = dq for some integer d.
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We would like to show that x | a+dy. Since (x, y) = 1, this is equivalent to showing that
x | y(a+ dy). But

y(a+ dy) = ay + dy2 = xb− dq + dy2 = xb− d(x2 + y2) + dy2 = xb− dx2

which is divisible by x. Thus x | a + dy, so there exist an integer c such that a + dy = cx.
Therefore

cxy = (a+ dy)y = xb− dx2 = x(b− dx)

and so
cy + dx = b.

Next we see that

N = a2 + b2 = (cx− dy)2 + (cy + dx)2 = (x2 + y2)(c2 + d2) = q(c2 + d2).

Since (a, b) = 1 it follows that (c, d) = 1 and the proof is complete.

And now for the actual descent step, assume that we have an odd prime p (and thus
p > 2) that divides a number M of the form M = a2 + b2 with (a, b) = 1. We want to show
that p ≡ 1 (mod 4).

First, note that we can add or subtract any multiple of p from a or b without changing
the problem. That is, we can find integers a1, b1 with |a1|, |b1| < p/2 such that p|N1 = a21+b21.
In particular, N1 < p2/2. Denote d = (a1, b1) Then d < p/2, so p - d. We also know that
a1 = da2, b1 = db2 and (a2, b2) = 1. Note that |a2| ≤ |a1| < p/2 and likewise |b2| < p/2.
Therefore N2 = a22 + b22 < p2/2.

We have
p | a21 + b21 = d2(a22 + b22).

Since p is a prime that does not divide d, it follows that p|N2 = a22 + b22.
So we showed that our prime p has to divide a number M = u2+v2 < p2/2 with (u, v) = 1

and |u|, |v| < p/2. The positive integer m = M/p will have to be m < p/2.

Let q be a prime divisor of m. Clearly q 6= p since q ≤ m < p/2. In particular q < p and
p | M

q
.

Assume that q can be written as the sum of two squares. By Lemma 7.6, we have
M/q = x2 + y2 for some integers (x, y) = 1. But then p | x2 + y2 < u2 + v2 = M.

So if all the prime factors of M different from p can be written as sums of two squares,
then so can p. Since we assumed that this is not the case, it follows that M has some prime
divisor p1 < p that cannot be written as the sum of two squares. By repeating the argument
for p1 it follows that there must exist another prime p2 < p1 that cannot be written as the
sum of two squares. This argument cannot continue indefinitely, so at some point we are
bound to hit the prime number 5 = 22 + 12 which can obviously be written as the sum of
two squares. The descent step is now proven and this completes the proof of Theorem 7.4.
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Note that we implicitly used the fact that if (x, y) = 1 then 3 - x2 + y2. To see this,
recall that for any integer x we have x ≡ 0, 1 or − 1 (mod 3), so x2 ≡ 0 or 1 (mod 3). Since
(x, y) = 1 we cannot have x2 ≡ y2 ≡ 0 (mod 3), so x2 + y2 6≡ 0 (mod 3).

7.4 Arithmetic

Not just the ring of Gaussian integer, but the field Q(i) is equipped with a norm map
N : Q(i)→ Q≥0 given by N(x+iy) = x2+y2 = |x+iy|2 = (x+iy)(x−iy) = (x+iy)(x+ iy).

Again we have N(αβ) = N(α)N(β) for all α, β ∈ Q(i) and N(α) = 0 ⇐⇒ α = 0.

Example 7.7. Does 3 − 4i divide 2 + i? We can do the division by taking the ratio and
rationalizing the denominator (i.e. multiply both top and bottom of the fraction by the
complex conjugate of the denominator).

2 + i

3− 4i
=

(2 + i)(3 + 4i)

(3− 4i)(3 + 4i)
=

2 + 11i

25
=

2

25
+ i

11

25
/∈ Z[i] =⇒ 3− 4i - 2 + i.

Example 7.8. Does 18 divide 5 + 17i?

5 + 17i

18
=

5

18
+

17

18
i /∈ Z[i] =⇒ 18 - 5 + 17i.

Lemma 7.9. An integer c ∈ Z divides a gaussian integer a+ bi if and only if c|a and c|b in
Z.

Proof.

c | a+ bi ⇐⇒ a+ bi

c
∈ Z[i] ⇐⇒ a

c
+
b

c
i ∈ Z[i] ⇐⇒ a

c
,
b

c
∈ Z ⇐⇒ c|a and c|b.

Proposition 7.10. If α, β ∈ Z[i] and α | β in Z[i], then N(α) | N(β) as integers.

Proof.

α | β =⇒ β = αγ for some γ ∈ Z[i] =⇒ N(β) = N(α)N(γ) =⇒ N(α) | N(β).

The converse is not true in general. For instance, N(5)|N(3− 4i) (both norms are equal
to 25), but 5 - 3− 4i.

There is however an exception. The element 1 + i has norm N(1 + i) = 2. We have the
following result.

Proposition 7.11. Let α = a+ bi ∈ Z[i]. Then N(1 + i) | N(α) if and only if (1 + i) | α.
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Proof. Clearly (1 + i) | α implies N(1 + i) | N(α). Conversely, we know that 2 | a2 + b2. We
want to show that there exist m,n ∈ Z such that

a+ bi = (1 + i)(m+ ni).

Expanding the right hand side we see that

a+ bi = (1 + i)(m+ ni) ⇐⇒ a = m− n, b = m+ n.

We solve this 2× 2 linear system in the unknowns m,n and find that m = a+b
2

and n = b−a
2
.

In order for these two numbers to be integers we need a + b and b − a to be even. But we
know that 2 | a2 + b2, so a and b are either both even or both odd, i.e. a ≡ b(mod 2). Hence
2 | a+ b, b− a and the result is proved.

Recall the long division in Z[i] : for any α, β ∈ Z[i] with β 6= 0 there exist γ, ρ ∈ Z[i]
such that α = βγ + ρ and 0 ≤ N(ρ) < N(β).

However, as opposed to the division algorithm on Z, we do not have uniqueness for γ
and ρ. For instance, take α = −9, β = −5. We have

−9 = (−5)× 1 + (−4)

and
−9 = (−5)× 2 + 1.

Both 1 and −4 have norm strictly smaller than the norm of −5. Indeed, N(1) = 1 < 25 =
N(−5) and N(−4) = 16 < 25 = N(5).

Since Z[i] is an euclidean ring, it is also a unique factorization domain. But note that
the factorization is unique up to multiplication by units. This was already the case over Z.
Namely, we know that “any nonzero integer n can be written as a product of primes”. But
what we really mean by this is that

n = (±1)p1 . . . pr

with p1, . . . , pr prime integers (and here is understood that they are positive). But in Z[i]
there is no positivity, so for instance 1 + i and 1− i really represent the same prime. That
is, we see that they only differ by a unit, i.e.

1 + i

1− i
=

(1 + i)2

(1 + i)(1− i)
=

2i

2
= i, so (1 + i) = i(1− i).

In particular, 1 + i and 1 − i generate the same ideal of Z[i]. We will write π1 ∼ π2 if
they are two primes in Z[i] and there is a unit µ ∈ Z[i] such that π1 = µπ2. The unique
factorization in Z[i] tells us that any nonzero gaussian integer α can be written as

α = µπ1 . . . πr
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where µ ∈ U(Z[i]) and π1, . . . , πr are prime gaussian integers (not necessarily distinct. More-
over, if we have another factorization

α = νσ1 . . . σs

then r = s and for each 1 ≤ j ≤ r there exits 1 ≤ kj ≤ r such that πj ∼ σkj .

Definition. Just like for regular integers, we say that two gaussian integers α, β are rela-
tively prime if they have only unit factors in common.

Definition. For two elements α, β ∈ Z[i], a greatest common divisor is a divisor of maximal
norm.

Note that this definition does not define a unique gaussian integer. If you have found a
greatest common divisor δ of α, β then ±δ,±iδ (that is, δ multiplied by the units) are also
divisors with maximal norm. But this is all the indeterminacy, since a greatest common
divisor δ of two numbers with prime factorizations

α = µ1π
m1
1 . . . πmrr β = µ2π

n1
1 . . . πnrr

with π1, . . . , πr prime elements of Z[i], µ1, µ2 units, mj, nj ≥ 0 is of the form

δ = µπ
min{m1,n1}
1 . . . πmin{mr,nr}

r

for some µ ∈ U(Z[i]).

Lemma 7.12. (i) Assume that α | βγ are gaussian integers and that α, β are relatively
prime. Then α | γ.

(ii) Assume that α, β, γ ∈ Z[i] such that α | γ and β | γ. If α and β are relatively prime,
then αβ | γ.

Proof. Follows from unique factorization.

Proposition 7.13. If α, β ∈ Z[i] and there exist γ, δ ∈ Z[i] such that αγ + βδ is a unit in
Z[i], then α, β are relatively prime. In particular, if a, b ∈ Z are relatively prime integers,
then they are also relatively prime in Z[i].

Proof. If τ ∈ Z[i] divides both α and β, then τ | (αγ + βδ), which is a unit. Therefore
N(τ) | 1. Thus N(τ) = 1 and τ has to be a unit.

Since a, b ∈ Z are relatively prime, it follows that there exist m,n ∈ Z such that

am+ bn = 1.

By the first part, they are relatively prime in Z[i].
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7.5 The prime elements of Z[i]

Proposition 7.14. If α ∈ Z[i] has norm N(α) = p a prime integer, then α is a prime
element of Z[i].

Proof. Assume that α = βγ with β, γ ∈ Z[i]. Then N(β)N(γ) = N(α) = p is a prime
number. Since N(β), N(γ) ∈ Z, it follows that either N(β) = 1 or N(γ) = 1. By the
previous lemma, this means that either β is a unit or γ is a unit. Hence α has no nontrivial
divisors, and is therefore a prime gaussian integer.

We want to find all elements π = a+ bi ∈ Z[i] that are prime gaussian integers. We have
seen in Proposition 7.14 that if the norm of a gaussian integer α is prime, then α is prime
in Z[i]. On the other hand, 3 is a prime in Z[i] but its norm N(3) = 9 is not a prime.

Lemma 7.15. If π ∈ Z[i] is a prime element, then there exist a prime number p ∈ Z such
that π | p in Z[i].

Proof. The norm N(π) is a positive integer, and therefore it factors as a product of primes
in Z,

N(π) = p1 . . . pr.

On the other hand, N(π) = ππ̄, so π | N(π). Thus

π | p1 . . . pr =⇒ π | pj for some 1 ≤ j ≤ r.

Theorem 7.16. Let p ∈ Z be a (positive) prime. Its factorization in Z[i] is determined by
its residue class modulo 4 as follows.

(i) 2 = (1 + i)(1− i) = −i(1 + i)2 = i(1− i)2 and 1 + i = i(1− i) represent the same prime
ideal in Z[i].

(ii) If p ≡ 1(mod 4) then p = ππ̄ where π, π̄ are two prime gaussian integers that are
complex conjugates, but not unit multiples. In particular, they generate different prime
ideals in Z[i].

(iii) If p ≡ 3(mod 4) then p is prime in Z[i].

Proof. (i) Direct calculation.

(ii) If p ≡ 1(mod 4), Theorem 7.4 says that p can be written as a sum of two relatively
prime squares p = a2 + b2 = (a + bi)(a − bi). Set π = a + bi. Then π̄ = a − bi and
clearly p = ππ̄. Moreover N(π) = N(π̄) = a2 + b2 = p is prime, so π and π̄ are prime
gaussian integers by Proposition 7.14. Lastly,

a+ bi

a− bi
=

(a+ bi)2

a2 + b2
=
a2 − b2

a2 + b2
+ i

2ab

a2 + b2
/∈ Z[i]

since both fractions have absolute value smaller than 1.
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(iii) If p ≡ 3(mod 4), this follows from Proposition 7.2 and Theorem 7.4.

Lemma 7.15 tells us that any gaussian prime is a factor of a prime p ∈ Z. Theorem
7.16 tells us how integral primes factor in Z[i]. We put these two results together and get a
complete characterization of the prime elements in Z[i].

Theorem 7.17. Every prime gaussian integer is a unit multiple of one of the following
primes:

(i) 1 + i;

(ii) π or π̄ where N(π) = p is a prime integer p ≡ 1(mod 4);

(iii) a prime p in Z with p ≡ 3(mod 4). In this case N(p) = p2.

Note that in the first two cases the prime gaussian integers have nonzero real and imagi-
nary parts, while in the third case we get ±p,±ip which have either the real or the imaginary
part equal to 0. Moreover, the only prime gaussian integer of even norm is 1 + i (up to unit
multiples). Therefore we see that if we have α ∈ Z[i] and its prime factorization

α = µπ1 . . . πr

does not contain a prime multiple of 1 + i, then N(α) = N(π1) . . . N(πr) is an odd integer.
We find this way another proof of the fact that N(α) is even ⇐⇒ 1 + i | α.

7.6 Representing integers as sums of squares

We saw that a prime can be written as a sum of two squares essentially only one way, if at
all (Theorem 7.21). We have seen that other integers though can be written as sums of two
squares in multiple ways. For instance, 50 = 52 + 52 = 72 + 12. We can use the arithmetic in
Z[i] to systematically construct integers that are sums of two squares in more than one way.
Take the factorizations of 5 and 10 in Z[i]. We have

5 = (1 + 2i)(1− 2i) 10 = (1 + 3i)(1− 3i).

Thus 50 factors in two ways

50 = 5 · 10 =
(
(1 + 2i)(1 + 3i)

)
·
(
(1− 2i)(1− 3i)

)
=
(
(1 + 2i)(1− 3i)

)
·
(
(1− 2i)(1 + 3i)

)
This becomes

50 = (−5 + 5i)(−5− 5i) = (7− i)(7 + i),

which gives
50 = 52 + 52 = 72 + 12.
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Different representations of an integer as a sum of two squares in Z correspond to rearranging
prime factors in Z[i]. Here’s another example. Consider the factorizations of 5 and 13. We
have

5 = (1 + 2i)(1− 2i) 13 = (2 + 3i)(2− 3i).

Therefore

65 = 5 · 13 =
(
(1 + 2i)(2 + 3i)

)
·
(
(1− 2i)(2− 3i)

)
=
(
(1 + 2i)(2− 3i)

)
·
(
(1− 2i)(2 + 3i)

)
which becomes

65 = (−4 + 7i)(−4− 7i) = (8 + i)(8− i).

The two factorizations yield two ways of writing 65 as a sum of squares:

65 = 42 + 72 = 82 + 12.

Let us find an integer which can be written as the sum of two squares in three different
ways. Start with

5 = (1 + 2i)(1− 2i) 13 = (2 + 3i)(2− 3i) 17 = (1 + 4i)(1− 4i).

Consider the following products

α = (1 + 2i)(2 + 3i)(1 + 4i) β = (1− 2i)(2 + 3i)(1 + 4i) γ = (1 + 2i)(2− 3i)(1 + 4i).

Then
α = −32− 9i β = 12 + 31i γ = 4 + 33i

are gaussian integers with

N(α) = N(β) = N(γ) = 5 · 13 · 17 = 1105.

Therefore
1105 = 322 + 92 = 122 + 312 = 42 + 332.

Using this method you can construct systematically and without having to guess integers
that can be represented as sums of two squares in four, five, . . . , twenty, . . . ways.

Moreover, the arithmetic of Z[i] allows us to classify the integers that can be represented
as sums of two squares.

Lemma 7.18. (a) An integer n can be written as the sum of two squares if and only if n
is the norm of some gaussian integer.

(b) If m,n ∈ Z can be written as sums of two squares, then mn can also be written as the
sum of two squares.

Proof. (a) n = a2 + b2 ⇐⇒ n = N(a+ bi)
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(b) By part (a), we know that there exist α, β ∈ Z[i] such that n = N(α) and m = N(β).
Then mn = N(αβ) is also the sum of two squares.

Theorem 7.19. An integer n > 1 is a sum of two squares exactly when any prime factor of
n which is ≡ 3(mod 4) occurs with even multiplicity.

Proof. First we show any integer n > 1 having even multiplicity at its prime factors which
are ≡ 3(mod 4) can be written as a sum of two squares. The prime 2 = 12 + 12 and any
prime p ≡ 1(mod 4) can be written as the sum of two squares, by Theorem 7.4. On the other
hand, q2 = q2 + 02 is trivially the sum of two squares, for any prime q ≡ 3(mod 4). Since
sums of two squares are closed under multiplication (part (b) of the Lemma), it follows that
n can be written as the sum of two squares.

Now we treat the converse direction: any n > 1 which is a sum of two squares has even
multiplicity at any prime factor which is ≡ 3(mod 4). We argue by induction on n.
The fact is obviously true for n = 2 = 12 + 12.
Let n ≥ 3 be a sum of two squares. We assume that in any sum of two squares < n the prime
factors that are ≡ 3(mod 4) occur with even powers. (This is the induction hypothesis.)
If n has no prime factors congruent to 3 modulo 4, then we have nothing to prove and the
result is obviously true.
In case n = a2 + b2 has some prime factor p ≡ 3(mod 4), we get that

p | (a+ bi)(a− bi).

On the other hand p is prime in Z[i], so p | a + bi or p | a − bi. But in either case we can
take complex conjugates and obtain that p = p̄ | a− bi and p = p̄ | a+ bi. Thus

p2 | (a+ bi)(a− bi) = n.

On the other hand, p | a + bi implies that p | a and p | b (Lemma 7.9). Then we can write
a = pa1, b = pb1 for some a1, b1 ∈ Z. Thus

n = p2(a21 + b21)

and n1 = a21 + b21 < n. By the induction hypothesis, any prime ≡ 3(mod 4) that appears in
the factorization of n1 appears with an even exponent. Therefore the same holds for n and
our proof is complete.

Example 7.20. For primes we have seen that p ≡ 1(mod 4) =⇒ p can be written as the
sum of two squares. But the number 21 = 3 · 7 cannot be written as the sum of two squares,
even though 21 ≡ 1(mod 4). In general, we need to factor an integer n > 1 in order to decide
if it can be written as the sum of two squares.
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7.7 More applications to the arithmetic of Z
7.7.1 Primality testing: Fermat primes

Fermat conjectured that the numbers of the form 22n + 1 are prime. Indeed,

• for n = 0 : 21 + 1 = 3 is prime;

• for n = 1 : 22 + 1 = 5 is prime;

• for n = 2 : 23 + 1 = 17 is prime.

The others get a bit too big for us to be able to tell at a glance that they are prime. But
28 + 1 = 257 can be checked by hand without too much trouble that it is prime. Same for
224 + 1 = 4097.

However
225 = 232 + 1 = 4294967297

is too big to check by hand easily. Note that 232 + 1 = (216)2 + 12 is the sum of two squares.
Euler found that it has another very different representation as sum of two squares, namely

(216)2 + 12 = 4294967297 = 622642 + 204492.

The following theorem implies that the fifth Fermat number is in fact not a prime.

Theorem 7.21. If p is a prime that can be written as sum of two squares, then it can be
written like that in essentially one way. That is, if p = a2 + b2 = c2 + d2, with a, b, c, d,∈ Z,
then either a = ±c, b = ±d or a = ±d, b = ±c.
Proof. We have

(a+ bi)(a− bi) = a2 + b2 = c2 + d2 = (c− di)(c+ di)

and
N(a+ bi) = N(a− bi) = a2 + b2 = p

N(c+ di) = N(c− di) = c2 + d2 = p.

Since p is a prime, it follows from Proposition 7.14, that a + bi, a − bi, c + di, c − di are all
prime elements in Z[i]. By the unique factorization, it follows that either a+ bi = µ(c+ di)
for some µ ∈ U(Z[i]) or a+ bi = µ(c− di) for some µ ∈ U(Z[i]).

If a+ bi = µ(c+ di) we have four possibilities.

• µ = 1 =⇒ a = c, b = d

• µ = −1 =⇒ a = −c, b = −d

• µ = i =⇒ a = −d, b = c

• µ = −i =⇒ a = d, b = −c
The other case is similar.

Note that the Theorem does not mention Z[i], it is a statement purely about integers.
The proof however hinges on the arithmetic of the gaussian integers.
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7.7.2 Pythagorean triples revisited

We start with the diophantine equation

a2 + b2 = c2. (7.1)

As before we reduce to the case where a, b, c are positive integers with (a, b) = (b, c) =
(c, a) = 1, a odd and b even. Then c must also be odd.

Our equation (7.1) can be rewritten as

(a+ bi)(a− bi) = c2. (7.2)

Claim 1 a+ bi and a− bi are relatively prime.

Proof. Assume δ | a + bi and δ | a − bi. Then δ | 2a and δ | 2bi =⇒ δ | 2b. If δ and
2 = −i(1 + i)2 were not relatively prime, then 1 + i | δ =⇒ 2 | N(δ). On the other hand,
δ | c2, so N(δ) | c4 which is odd. This is a contradiction, so δ and 2 are relatively prime in
Z[i]. Then, Lemma 7.12 implies that

δ | a, δ | b.

But a, b are relatively prime, so δ must be a unit.

Claim 2 There exist α, β ∈ Z[i] such that either a+ bi = α2 and a− bi = β2 or a+ bi = iα2

and a− bi = −iβ2.

Proof. Exercise.

Since a+ bi and a− bi are relatively prime, α, β are also relatively prime.
Thus a+ bi = α2 = (m+ni)2 or a+ bi = iα2 = i(m+ni)2 for some m,n ∈ Z. Expanding

the square leads to

a+ bi = m2 − n2 + 2mni or a+ bi = −2mn+ i(m2 − n2).

However, we want a to be odd, so the second case cannot occur. We are therefore in the
first case and a+ bi is after all a perfect square in the Z[i], i.e.

a+ bi = (m+ ni)2 with m,n ∈ Z. (7.3)

The derivation of (7.3) from unique factorization in Z[i] is the key step in this proof. The
rest is a matter of (careful) book-keeping. Identifying the real and imaginary parts above
gives

a = m2 − n2, b = 2mn

and therefore

c2 = a2+b2 = (m2−n2)2+(2mn)2 = m4+n4−2m2n2+4m2n2 = m4+n4+2m2n2 = (m2+n2)2.
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Since c > 0 it follows that
c = m2 + n2.

We also have b > 0 so both m,n have to have the same sign, and by changing that sign we
can assume without changing the values of a, b, c that m,n > 0. Since a > 0 we must have
m > n. They also have to be relatively prime, since a, b are relatively prime. Lastly, since a
is odd, m 6≡ n(mod 2).

We need to check that our solution (a, b, c) = (m2 − n2, 2mn,m2 + n2) with m > n >
0, (m,n) = 1,m 6≡ n(mod 2), satisfies (7.1) and that a, b, c are positive integers with (a, b) =
(b, c) = (c, a) = 1, a odd and b even. Indeed,

a2 + b2 = (m2 − n2)2 + (2mn)2 = (m2 + n2)2 = c2.

On the other hand, m 6≡ n(mod 2) =⇒ a odd, and b = 2mn is clearly even. Since
m > n > 0 we have a, b, c > 0. If a prime p divides two of m2 − n2, 2mn,m2 + n2 then p 6= 2
since the first and third numbers are odd. Assume p|m2−n2 and p|2mn. Then p|mn so p|m
or p|n. Assume p|m. Then p|n2 and so p|n. This cannot happen since (m,n) = 1. The other
case is similar.

To recap: we found a way of producing Pythagorean triples on demand. That is, take
any gaussian integer α with both the real and imaginary parts non-zero, square it and get
α2 = a+ bi. Then (|a|, |b|, N(α)) is a Pythagorean triple.

Example 7.22. (23 + 10i)2 = 529 − 100 + 460i = 429 + 460i and 232 + 102 = 629. So
(429, 460, 629) is a Pythagorean triple. (Grab a calculator and check!) And since (23, 10) = 1
the triple is relatively prime.

7.7.3 Other diophantine equations

To better appreciate this approach to Pythagorean triples, let’s apply it to the diophantine
equation

a2 + b2 = c3. (7.4)

Theorem 7.23. The integral solutions to

a2 + b2 = c3

with (a, b) = 1 are given by the parametric formulas

a = m3 − 3mn2, b = 3m2n− n3, c = m2 + n2, where (m,n) = 1,m 6≡ n (mod 2).

Different choices of m,n give different solutions (a, b, c).

Proof. Note that a and b cannot both be even since they are relatively prime. On the other
hand, if they were both odd we would have a2, b2 ≡ 1(mod 8) and therefore c3 ≡ 2(mod 8)
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which is impossible. (In this case, c would have to be even, which would make c3 a multiple
of 8.) This a 6≡ b(mod 2) and c is odd. We can rewrite (7.4) as

c3 = (a+ bi)(a− bi). (7.5)

We first show that a+ bi and a− bi are relatively prime gaussian integers. Let δ ∈ Z[i] such
that δ | a+ bi and δ | a− bi. As we have seen in the previous section, this implies that

δ | 2a, δ | 2b.

On the other hand N(δ) | a2 +b2 which is odd, so N(δ) is odd and thus δ and 2 are relatively
prime. It follows that

δ | a, δ | b.
Since (a, b) = 1 it follows that δ is a unit in Z[i].
Hence a+ bi and a− bi are relatively prime. From (7.5) follows that a+ bi = µα3 for some
µ ∈ U(Z[i]), α ∈ Z[i]. On the other hand, every unit in Z[i] is itself a cube:

1 = 13,−1 = (−1)3, i = (−i)3,−i− i3.
Therefore we can write µ = ν3 and so a+ bi = (να)3 and να = β ∈ Z[i]. Thus

a+ bi = (m+ ni)3 for some m,n ∈ Z.

Every prime p ∈ Z that divides both m and n would have to divide a and b. Therefore
(m,n) = 1. We expand the cube and see that

a = m3 − 3mn2 b = 3m2n− n3.

If m ≡ n(mod 2), then we would get

a ≡ m3 − 3m3 (mod 2) ≡ 0 (mod 2)

and
b ≡ 3m3 −m3 (mod 2) ≡ 0 (mod 2)

which contradicts the fact that a 6≡ b(mod 2). Hence m 6≡ n(mod 2). Plugging the value of
a+ bi = (m+ ni)3 into (7.5) we see that

c3 = (m+ ni)3(m− ni)3 = (m2 + n2)3 =⇒ c = m2 + n2.

We have to check two things. First, that our parametric equations give a solution (a, b, c)
to (7.4) with (a, b) = 1 and a+ bi = (m+ ni)3. Second, that changing the m,n changes the
(a, b, c). The first is a direct calculation. The second uses the fact that the only cube root
of unity in Z[i] is 1 itself. We know this since the norm of a cube root of 1 would have to
be 1 and so the cube roots of unity are in U(Z[i]). But we have seen what the cubes of the
elements in U(Z[i]) are from above. This means that if (m + ni)3 = (m′ + n′i)3 we must
have m+ ni = m+ n′i hence m = m′ and n = n′.
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Here’s a table with a few solutions (a, b, c) to (7.4) for various choices of m and n.

m n a = m3 − 3mn2 b = 3m2n− n3 c = m2 + n2

1 0 1 0 1
2 1 2 11 5
3 2 −9 46 13
4 1 52 47 17
4 3 −44 9 25
7 2 259 286 53

Another application is to show that a perfect square in Z cannot come just before a
perfect cube.

Theorem 7.24. The only integers a, b satisfying a2 = b3 − 1 are a = 0, b = 1.

On the face of it, this is not at all obvious. Besides, there are plenty of perfect cubes
that come just before a perfect square: −1 and 0; 0 and 1; 8 and 9.

Proof. Clearly a = 0, b = 1 satisfy a2 = b3 − 1. We want to show that there are no other
solutions. Assume a, b ∈ Z do satisfy

a2 = b3 − 1.

We can rewrite this equation as
b3 = (a− i)(a+ i)

and follow the blueprint from the previous theorem. If we know that a + i and a − i are
relatively prime, then, recalling that the only cube root of unity is 1 itself, we see that a+ i
and a− i have to be perfect cubes in Z[i] and we would get

a = m3 − 3mn2, 1 = 3m2n− n3

for some m,n ∈ Z. The second relation shows that n | 1, so n = ±1. If n = 1, we have
1 = 3m2 − 1 so 3m2 = 2 which is impossible. Thus n = −1 and therefore 1 = 1 − 3m2 so
m = 0. This leads us to a = 0 and b3 = 1, so b = 1.

It remains to show that a+ i and a− i are relatively prime gaussian integers. Assume δ
is a common divisor. Then δ|2a and δ | 2i = (1 + i)2. Thus, up to units, δ is either 1 or 1 + i
or (1 + i)2. Assume δ is not a unit. Then (1 + i) | δ and therefore (1 + i) | b3. Since 1 + i is
a prime gaussian integer, we then have (1 + i) | b, hence b2 = N(b) is even. Thus b must be
even, and therefore a ≡ −1(mod 4) which is impossible.

Remark 7.25. In 1850, Lebesgue used Z[i] to show that, for d ≥ 2, the only integral solution
to

y2 = xd − 1

is x = 1, y = 0.
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8 Diophantine equations and congruences

As we have already seen in some isolated examples, one can try to show that a diophantine
equation does not have solutions by showing that it has no solution modulo some integer n.

Example 1 x2 − 3y2 = −1

Looking at this equation modulo 3, we see that

x2 ≡ −1 (mod 3),

which we know it is impossible since 3 - 1.

Example 2 x2 − 7y2 = −1

This implies that x2 + 1 ≡ 0 (mod 7) and that is impossible since 7 is a prime and
7 ≡ 3 (mod 4).

Example 3 x2 − 15y2 = 2

This implies that x2 ≡ 2 (mod 5). But the only squares modulo 5 are 0, 1, 4.

Example 4 x2 − 5y2 = 3z2

Assume that we have a positive solution with (x, y, z) = d. Then x = dx1, y = dy1, z =
dz1 with (x1, y1, z1) = 1 and

x21 − 5y21 = 3z21 .

In particular, 3 | x21 − 5y21 and, since obviously 3 | 6y21, we get 3 | x21 + y21. We know
that this is only possible if 3 | x1 and 3 | y1. But then 9 | 3z21 and so 3 | z1. This cannot
happen since (x1, y1, z1) = 1.

9 Quadratic rings

We begin by looking at the ring Z[
√
d] = {a+b

√
d ; a, b ∈ Z} for some d ∈ Z. The ring Z[

√
d]

is clearly contained in the field Q(
√
d) = {x+ y

√
d ;x, y ∈ Q}.

Exercise 9.1. Prove that Z[
√
d] is a ring, that Q(

√
d) is a field. Show that if d is a perfect

square, then Z[
√
d] = Z and Q(

√
d) = Q. Furthermore, if d = d1d

2
2 then Z[

√
d] = Z[

√
d1]

and Q(
√
d) = Q(

√
d1).

Lemma 9.2. The map N : Q(
√
d) → R given by N(x + y

√
d) = x2 − dy2 is multiplicative

(i.e. N(αβ) = N(α)N(β) for all α, β ∈ Q(
√
d)) and

N(α) = 0 ⇐⇒ α = 0.
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Note that this map does not necessarily make Z[
√
d] into an Euclidean ring. To begin

with, it could take negative values, e.g. N(1 +
√

6) = −5 in Z[
√

6]. In fact, whenever d > 1
the map N will take negative values. When d < 0, the map N takes only nonnegative values.
But even then, Z[

√
d] could fail to be an Euclidean ring. For instance, Z[

√
−6] = Z[i

√
6] is

not an UFD (6 = −
√
−6 ·
√
−6 = 2 · 3.) and therefore not an Euclidean ring.

Proposition 9.3. An element α ∈ Z[
√
d] is a unit in the ring Z[

√
d] if and only if N(α) =

±1.

Proof. Assume α is a unit. Then there exist β ∈ Z[
√
d] such that αβ = 1. Therefore

N(α)N(β) = 1. Since N(α) and N(β) are integers, the only way this can happen is if
N(α) = N(β) = ±1.

Conversely, assume N(α) = ±1. On the other hand α = a+ b
√
d, so N(α) = α(a− b

√
d).

Then β = ±(a− b
√
d) is the inverse of α in Z[

√
d].

9.1 Units in imaginary quadratic rings

An imaginary quadratic ring is of the form Z[
√
d] with d < 0. For instance the gaussian

integers Z[i] are such a ring (d = −1). If d < 0 then the norm map N : Q(
√
d) → R given

by N(x + y
√
d) = x2 − dy2 takes only non-negative values. Therefore Proposition 9.3 says

that α = a + b
√
d ∈ Z[

√
d] is a unit ⇐⇒ N(α) = 1 ⇐⇒ a2 − db2 = 1. If d = −1 we have

seen that this amounts to α = ±1,±i. If d < −1, then the only way to have a2 − db2 = 1 is
for b = 0 and a = ±1. Therefore we have the following result.

Theorem 9.4. In an imaginary quadratic ring Z[
√
d] with d < 0, the units are

U
(
Z[
√
d]
)

=


{±1,±i} if d = −1 (gaussian integers);

{±1} if d < −1.

9.2 Units in real quadratic rings: Fermat-Pell equations

Assume d is a positive integer. Then Proposition 9.3 says that the units in the real quadratic
ring Z[

√
d] are exactly those elements a+ b

√
d with (a, b) satisfying one of the equations

x2 − dy2 = 1 (9.1)

or
x2 − dy2 = −1. (9.2)

So in order to determine the units in Z[
√
d] we need to solve these diophantine equations

called Fermat-Pell equations. That is, we want to figure out for which d they have (non-
trivial) integer solutions. (Trivial solutions are the ones where either x = 0 or y = 0.) If the
answer is affirmative, we want to find a way to write down all solutions.

First a few examples.
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Example 1 x2 − 3y2 = −1

Looking at this equation modulo 3, we see that

x2 ≡ −1 (mod 3),

which we know it is impossible since 3 - 1.

Example 2 x2 − 3y2 = 1

For instance (2, 1) is a solution. In fact, it has infinitely many solutions as we shall see
shortly.

Example 3 x2 − 7y2 = −1

This implies that x2 + 1 ≡ 0 (mod 7) and that is impossible since 7 is a prime and
7 ≡ 3 (mod 4).

Example 4 x2 − py2 = −1

has no solutions when p is a prime p ≡ 3 (mod 4). The argument is the same as in the
previous example.

We start our systematic study by proving the following result.

Theorem 9.5. Let d be a positive integer.

1. If the equation
x2 − dy2 = 1 (9.1)

has one positive solution, then it has infinitely many positive solutions.

2. If the equation
x2 − dy2 = −1 (9.2)

has one positive solution, then both (9.1) and (9.2) have infinitely many positive solu-
tions.

The theorem follows immediately from the following lemma.

Lemma 9.6. Assume that a, b, d ∈ Z>0 and let

c = a2 − db2.

Then for any n ≥ 1 there exist positive integers xn, yn such that

x2n − dy2n = cn.

Moreover, we can choose these integers such that {xn}n and {yn}n are two strictly increasing
sequences.
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Proof. By induction on n. First, we have to check for n = 1. This is resolved by taking
x1 = a and y1 = b.

Now assume that we found xn, yn. Then

cn+1 = cn·c = (x2n−dy2n)(a2−db2) = a2x2n+d2b2y2n−d(a2y2n+b2x2n) = (axn+dbyn)2−d(ayn+bxn)2.

Then {
xn+1 = axn + dbyn

yn+1 = ayn + bxn

have the property that
x2n+1 − dy2n+1 = cn+1.

It remains to verify that xn+1 > xn and yn+1 > yn. This is so because

xn+1 = axn + dbyn > axn ≥ xn

and
yn+1 = ayn + bxn > ayn ≥ yn.

They are of course positive because xn > x1 = a > 0 and yn > y1 = b > 0 for all n > 1.

Even though we proved that if a solution exists, then infinitely many solutions exits, we
are far from done. We still have to figure out exactly when the Pell equations have solutions
and how to generate all solutions.

For the rest of this section we assume that d > 0 is square-free.

9.3 Continued fractions

We still want a method for finding that smallest solution to Pell’s equation (9.1). The answer
will be provided in terms of continued fractions (and dates back to the dawn of time, or at
least to VI century India).

Given a real number α one computes its continued fraction expansion as follows.

α0 = α, a0 = bα0c λ1 = α0 − a0

αi =
1

λi
, ai = bαic λi+1 = αi − ai ∀i ≥ 1

(9.3)

The process stops if λn = 0 ⇐⇒ αn ∈ Z for some n. This formula ensures that αi, ai ≥ 1
for all i ≥ 1.
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Definition. We say that

[a0, a1, . . .] = a0 +
1

a1 + 1
a2+...

is the continued fraction of the real number α, where the ai’s are computed according to the
procedure given in (9.3).

Example 9.7.

A =
5

3
= 1 +

2

3
= 1 +

1
3
2

= 1 +
1

1 + 1
2

The continued fraction expansion of 5
3

is [1, 1, 2].

Example 9.8. A finite continued fraction [a0, a1, . . . , an] with ai ≥ 1 for all 1 ≤ i ≤ n, is
a rational number. Vice versa, if a

b
is a rational number, the procedure (9.3) outlines the

Euclidean algorithm for a and b. Thus the rational fraction of a rational number is finite,
unique, and a

b
is equal to to its continued fraction.

Example 9.9. The continued fraction of
√

5 is [2, 4, 4, 4, 4, . . .].

Other examples

• 3
√

2 = [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, . . .]

• π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, . . .]

• e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .]

Definition. Let [a0, a1, . . .] be a continued fraction. The rational number

sn =
pn
qn

= [a0, . . . , an] (n ≥ 0)

is called the nth convergent of [a0, a1, . . .].

Example 9.10.

n = 0 : s0 =
p0
q0

= [a0] = a0 =⇒ p0 = a0, q0 = 1

n = 1 : s1 =
p1
q1

= [a0, a1] = a0 +
1

a1
=
a0a1 + 1

a1
=⇒ p1 = a0a1 + 1, q1 = a1
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We can continue this procedure and see that in general

pn+1 = an+1pn + pn−1 for all n ≥ 1, p0 = a0, p1 = a0a1 + 1;

qn+1 = an+1qn + qn−1 for all n ≥ 1, q0 = 1, q1 = a1.
(9.4)

Note that
p1q0 − p0q1 = a0a1 + 1− a0a1 = 1.

Furthermore, (9.4) implies that

pn+1qn − pnqn+1 = (an+1pn + pn−1) qn − pn (an+1qn + qn−1) = pn−1qn − pnqn−1.

It follows by induction that

pn+1qn − pnqn+1 = (−1)n ∀n ≥ 0. (9.5)

In particular, pn, qn are relatively prime for all n and therefore the convergents
pn
qn

are

indeed written in lowest terms with pn, qn computed using the recurrence relations (9.4).

Moreover, if [a0, a1, . . .] is an infinite continued fraction (9.4) implies that the denomina-

tors qn keep growing, while (9.5) tells us that
pn
qn
− pn+1

qn+1

=
(−1)n

qnqn+1

. Therefore the convergents

pn
qn
, n ≥ 0, form a Cauchy sequence. We can now make the following definition.

Definition. When we write α = [a0, a1, . . .], we mean that α = lim
n→∞

pn
qn
.

Theorem 9.11. If α ∈ R \Q, then the continued fraction expansion of α is infinite and α
is indeed equal to its continued fraction obtained according to (9.3), i.e.

α = lim
n→∞

sn = lim
n→∞

pn
qn

= [a0, a1, . . .].

Proof. Exercise.

The above recurrence can be better understood in terms of linear fractional transforma-
tions.

9.3.1 Linear fractional transformations

Let M =

[
a b
c d

]
be a 2× 2 matrix with complex coefficients. Recall that

detM = ad− bc M t =

[
a c
b d

]
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and M has an inverse when detM 6= 0. In this case,

M−1 =
1

detM

[
d −b
−c a

]
Each such matrix defines a function C→ C given by

M(z) =
az + b

cz + d
.

Note that M1(M2(z)) = (M1 ·M2)(z) and I(z) = z. (Exercise!)

Exercise 9.12. For each n ≥ 0 let

Mn =

[
0 1
1 0

] [
0 1
1 a0

] [
0 1
1 a1

]
. . .

[
0 1
1 an

]
.

Then

Mn =

[
pn−1 pn
qn−1 qn

]
and sn = Mn(0) and α = Mn(λn+1).

Exercise 9.13. s0 < s2 < s4 < . . . < s2n < . . . < α < . . . < s2n+1 < . . . < s5 < s3 < s1 and
lim
n→∞

s2n = lim
n→∞

s2n+1 = lim
n→∞

sn = α.

Remark 9.14. We can also see immediately that detMn = (−1)n+2 = (−1)n as it is the
product of n+ 2 matrices each with determinant (−1). This gives us a new proof of the fact
that

pn−1qn − pnqn−1 = (−1)n.

(They are both equal to detMn.)

9.3.2 Best rational approximation

For any irrational number alpha, we have seen that the continued fraction algorithm produces
a sequence of rational numbers sn = pn/qn which converges to α. We want to prove that
these rational numbers are best approximations, in the following sense.

Theorem 9.15. Let α be a positive irrational number and n ≥ 0. Suppose that for some
positive integers x, y we have ∣∣∣∣xy − α

∣∣∣∣ < ∣∣∣∣pnqn − α
∣∣∣∣ ,

then y > qn.
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Proof. Claim |sn − α| < |sn−1 − α| (i.e. α is closer to sn than to sn−1. The claim follows if
we show that the real number

r =
α− sn
α− sn−1

has absolute value |r| < 1. To see this, let us examine

qn
qn−1

· r =
qn
qn−1

· α− pn/qn
α− pn−1/qn−1

=
qnα− pn

qn−1α− pn−1
.

Therefore

− qn
qn−1

· r =
qnα− pn

−qn−1α + pn−1
= A(α)

where

A =

[
qn −pn
−qn−1 pn

]
= (detMn)M−1

n = (−1)nM−1
n .

Hence
(−1)n+1 qn

qn−1
· r = M−1

n (α).

On the other hand, α = Mn(λn+1 (cf. Exercise 9.12), so

(−1)n+1 qn
qn−1

· r = λn+1.

We have obtained the relation

r = (−1)n+1 qn−1
qn
· λn+1,

so

|r| =
∣∣∣∣qn−1qn

∣∣∣∣ |λn+1| ≤ |λn+1| < 1

as qn > qn−1 and 0 < λn+1 < 1. (Since α is irrational, λn+1 6= 0.) The claim is therefore
proved.

Going back to the proof of the theorem, let I be the interval between sn and sn−1. Its
length is

|sn − sn−1| =
∣∣∣∣pnqn − pn−1

qn−1

∣∣∣∣ =
| detMn|
qnqn−1

=
1

qnqn−1
.

We know that α ∈ I, and by the above claim, we also know that α is closer to sn than
to sn−1. Hence ∣∣∣∣xy − α

∣∣∣∣ < ∣∣∣∣pnqn − α
∣∣∣∣ < ∣∣∣∣pn−1qn−1

− α
∣∣∣∣

It follows that x
y
∈ I and thus∣∣∣∣xy − sn−1

∣∣∣∣ < length(I) =
1

qnqn−1
.
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Therefore
1

qnqn−1
>

∣∣∣∣xy − sn−1
∣∣∣∣ =

∣∣∣∣xy − pn−1
qn−1

∣∣∣∣ =
|xqn−1 − ypn−1|

yqn−1
(9.6)

Since I is an open interval, we have x
y
6= sn−1 and therefore the numerator in (9.6) is

a non-zero integer. It follows that the absolute value of said numerator is an integer ≥ 1.
Thus, (9.6) implies that

1

qnqn−1
>

1

yqn−1
=⇒ y > qn.

There is another, more visual way in which the numbers sn = pn/qn are best approxi-
mations. Consider the points (p, q) in the xy-plane, where p, q are positive integers. We call
these lattice points. Each lattice point (p, q) determines a rational number p/q. Now draw
the line L with equation y = αx. Since α is irrational, this line L misses all the lattice points
(p, q). Start your car at the origin (0, 0), and travel up the line L, observing nearby lattice
points as they pass by. Every time you see a lattice point (p, q) that gets closer to you than
any previously seen lattice point, write down the rational number p/q. The remarkable fact
is that the list you make will be none other than

s1 =
p1
q1
, s2 =

p2
q2
, s3 =

p3
q3
. . .

So you can compute the best rational approximations to α without ever getting out of your
car.

9.3.3 Continued fractions and quadratic numbers

Definition. We say that a continued fraction is purely periodic if it is of the form

[b0, b1, . . . , bm] = [b0, b1, . . . , bm, b0, b1, . . . , bm, b0, b1, . . .].

We say that a continued fraction is periodic if it is of the form

[a0, . . . , ak, b0, b1, . . . , bm] = [a0, . . . , ak, b0, b1, . . . , bm, b0, b1, . . . , bm, b0, b1, . . .].

Example 9.16. Let α = [a, b̄]. Note that our procedure (9.3) ensures that b ≥ 1. Then

α = a+
1

β
, where β = [ b̄ ] > 1.

On the other hand,

β = b+
1

β
,

so
β2 = bβ + 1.
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Since β > 0, the quadratic formula tells us that

β =
b+
√
b2 + 4

2
,

and therefore

α = a+
2

b+
√
b2 + 4

· −b+
√
b2 + 4

−b+
√
b2 + 4

=
2a− b+

√
b2 + 4

2
.

In particular, if b = 2a we get that

[a, 2a, 2a, . . . , 2a, . . .] =
√
a2 + 1.

We have already seen this for a = 2, namely we have seen that
√

5 = [2, 4̄].

Lemma 9.17. If β = [b1, . . . , bm] has a purely periodic continued fraction with, then there
are positive integers x, y, u, v such that

β =
xβ + y

uβ + v
.

Proof. The key observation here is, as above, that

β = b1 +
1

. . . + 1
bm+ 1

β

.

The rest is just algebraic manipulation.

We can see that quadratic irrationals arise in the theory of continued fractions also using
the fractional linear transformation approach. Suppose α ∈ R \ Q is fixed by the integer
matrix

M =

[
a b
c d

]
.

That is, suppose we have
aα + b

cα + d
= α.

This amounts to the quadratic equation

cα2 − (a− d)α− b = 0.

Since α is assumed to be irrational, we must have c 6= 0, so α is a quadratic irrational.
Before we proceed further, one more observation about continued fraction expansion via

matrices. For any irrational number α = [a0, a1, . . .] (not necessarily quadratic), the nth
stage continued fraction expansion is of the form

α = [a0, . . . , an, αn+1]
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where
αn+1 = [an+1, an+2, . . . ].

In terms of matrices this means that

α = Mn

(
1

αn+1

)
=

[
pn−1 pn
qn−1 qn

] [
0 1
1 0

]
(αn+1) =

[
pn pn−1
qn qn−1

]
(αn+1) (9.7)

Remark 9.18. If it happens that αn+1 = α for some n, then we have

α =

[
pn pn−1
qn qn−1

]
(α),

so α is a quadratic irrational and it satisfies the quadratic equation

qnx
2 − (pn − qn−1)x− pn−1 = 0. (9.8)

Remark 9.19. If α = [a0, . . . , ak, b0, b1, . . . , bm] has a periodic continued fraction, then

α = Mk(αk+1) =

[
pk pk−1
qk qk−1

]
(αk+1)

and αk+1 = [b0, b1, . . . , bm] is purely periodic.

Theorem 9.20. (i) If the continued fraction expansion of a real number α is (eventually)
periodic, i.e.

α = [a0, . . . , ak, b0, b1, . . . , bm],

then there exists d ∈ Z>0 not a square such that α ∈ Q(
√
d), but α /∈ Q. Equivalently

we can say that there exist integers r, s, t, d with d > 0 not a square, s, t 6= 0 such that

α =
r + s

√
d

t
.

(ii) Let d be a positive integer that is not a perfect square and r, s, t ∈ Z, s, t 6= 0. Then the
continued fraction of

α =
r + s

√
d

t

is periodic. That is, the continued fraction of any irrational number in Q(
√
d) is

(eventually) periodic.

Proof. (i) Denote β = [b0, b1, . . . , bm]. Lemma 9.17 implies that β satisfies a quadratic equa-
tion

aβ2 + bβ + c = 0.

43



Note that the discriminant ∆ = b2− 4ac > 0 since β ∈ R \Q. (This is because β is the limit
of a sequence of positive rational numbers, but it cannot be rational itself since its continued
fraction is infinite.) In other words, β is of the form

β =
r′ + s′

√
d

t′

for some integers r′, s′, t′. In particular β ∈ Q(
√
d) and since Q(

√
d) is closed under addition,

division and multiplication, it follows that α ∈ Q(
√
d) \Q so α is of the desired form.

(ii) The argument for the second part is more complicated. The strategy will be as
follows. Recall the procedure (9.3) for computing the continued fraction of α. The statement
(ii) is equivalent to showing that there exist positive integers m, k such that αk = αk+m.
(In this case, the continued fraction procedure ensures that ak = am+k and αk+1 = αm+k+1,
etc. . . ) Note that it is enough to show that the set {αn;n ≥ 0} is finite.

Definition. The discriminant of a quadratic polynomial f(X) = aX2 + bX + c is

∆(f) = b2 − 4ac.

Definition. Given a matrix M =

[
u v
y z

]
with nonzero determinant and a quadratic poly-

nomial f(X) = aX2 + bX + c, we associate to f and M another quadratic polynomial is

fM(X) = (yX + z)2f

(
uX + v

yX + z

)
.

Note that fM(X) = ãX2 + b̃X + c̃ where

ã = au2 + buy + cy2 = y2f

(
u

y

)
(9.9)

b̃ = 2auv + b(uz + yv) + 2cyz

c̃ = av2 + bvz + cz2 = z2f
(v
z

)
.

While the coefficients of fM and f are quite different, their discriminants are related by

∆(fM) = (detM)2∆(f). (9.10)

In particular, if det(M) = ±1, then ∆(fM) = ∆(f).
We now go back to the proof of the Theorem 9.20.

Proof of (ii) continued. Recall that we want to show that the set {αn;n ≥ 0} is finite. In
order to achieve this, we will actually show that all αn’s have to be among the roots of a
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finite set of quadratic polynomials.

We start with the observation that if α ∈ Q(
√
d), then it is a root of some quadratic

polynomial f(X) = aX2 + bX+ c. Since α is irrational, we can fix f definitively by requiring
that a, b, c are relatively prime integers and a > 0. By (9.7), we know that

α = M̃n (αn+1)

where

M̃n =

[
pn pn−1
qn qn−1

]
.

Thus we have

0 = f(α) = f(M̃n(αn+1)) =⇒ 0 = fM̃n
(αn+1).

On the other hand, we know that

fM̃n
(X) = ãnX

2 + b̃nX + c̃n

where the coefficients ãn, b̃n, c̃n are given by (9.9). It is important to note that

c̃n = q2n−1f

(
pn−1
qn−1

)
= ãn−1.

Since det(M̃n) = − detMn = (−1)n+1, we have ∆(fM̃n
) = ∆(f), i.e.

b̃2n − 4ãnc̃n = b2 − 4ac.

Recall the basic inequality∣∣∣∣pnqn − α
∣∣∣∣ < 1

qnqn+1

=⇒ |pn − qnα| <
1

qn+1

<
1

qn
.

Therefore we can write pn = qnα + δn
qn

for some |δn| < 1. The coefficient

ãn = q2nf

(
pn
qn

)
= q2nf

(
α +

δn
q2n

)

= q2n

(
f ′(α)

δn
q2n

+ f ′′(α)
δ2n
2q4n

)
(Taylor expansion)

= f ′(α)δn + f ′′(α)
δ2n
2q2n

.
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It follows that |ãn| < |f ′(α)| + |f ′′(α)| and therefore there are finitely many possible
values available for ãn. Since c̃n = ãn−1, the same holds for c̃n. On the other hand, we know
that b̃2n − 4ãnc̃n = ∆(f), so b̃n can also take only finitely many values. Thus there are only
finitely many polynomials fM̃n

and therefore the set of their roots is finite, which is what we
wanted to prove.

9.3.4 Reduced quadratic numbers and purely periodic continued fractions

Going back to our initial goal, the study of Pell’s equations, we can now formulate the
following results.

Theorem 9.21. Let d > 0 be a positive integer that is not a square.

(i) Then the periodic fraction of
√
d is of the form

√
d = [a, b1, . . . , bm−1, 2a]

with bi = bm−i for 1 ≤ i ≤ m− 1.

(ii) Let
p

q
= [a, b1, . . . , bm−1]

written in lowest terms. Then (p, q) is the smallest positive integer solution to the
equation

x2 − dy2 = (−1)m.

(iii) The smallest positive integer solution to Pell’s equation

x2 − dy2 = 1 (9.1)

is given by {
(p, q) if m is even;

(p2 + dq2, 2pq) if m is odd.

(iv) Pell’s equation
x2 − dy2 = −1 (9.2)

has positive integer solution if and only if the continued fraction of
√
d has odd period.

Before we can start proving the theorem, we need some preparation. Consider a number
α = x+ y

√
d ∈ Q(

√
d).

Definition. The number α′ = x− y
√
d is called the conjugate of α.
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Note that α = α′ ⇐⇒ α ∈ Q and N(α) = α · α′. Moreover, (α + β)′ = α′ + β′ and
(αβ)′ = α′β′ for any α, β ∈ Q(

√
d).

Also note that if α /∈ Q satisfies the quadratic equation

aα2 + bα + c = 0,

then the two solutions
−b±

√
b2 − 4ac

2a

must be exactly α and α′.

Definition. A quadratic irrational α is reduced if α > 1 and −1 < α′ < 0.

Example 9.22. Let r = a/b > 1 be a rational number that is not a square and consider
α =
√
r =

√
a/b. Then α > 1 is a quadratic irrational, but it is not reduced as α′ = −

√
r =

−α < −1. However, let a0 = bαc. Then β = a0 + α is also a quadratic irrational, but
β′ = a0 − α ∈ (−1, 0). Hence β is reduced.

Lemma 9.23. If α > 1 and α′ < 0, then αn is reduced for every n ≥ 1.

Proof. It is enough to prove that α1 is reduced as the rest follows by induction. Recall that

α = a0 +
1

α1

and a0 ≤ α < a0 + 1. Therefore

α1 =
1

α− a0
> 1.

We also have α′ < 0 and a0 ≥, so a0 − α′ > 1. Hence

α1 =
1

α′ − a0
∈ (−1, 0).

Theorem 9.24 (Purely periodic continued fraction theorem). A quadratic irrational α is
reduced if and only if α has a purely periodic continued fraction

α = [a0, a1, . . . , an].

In this case, the conjugate α′ of α is given by

− 1

α′
= [an, . . . , a1, a0].

47



Proof. Suppose α = [a0, a1, . . . , an] has a purely periodic continued fraction. Then

[an, . . . , a1, a0] =

[
0 1
1 0

] [
0 1
1 an

]
. . .

[
0 1
1 a1

] [
0 1
1 a0

]
(0)

=

[
0 1
1 0

]([
0 1
1 a0

] [
0 1
1 a1

]
. . .

[
0 1
1 an

])t
(0) =

[
0 1
1 0

]
M t

n

[
0 1
1 0

]
(0)

=

[
qn pn
qn−1 pn−1

]
(0) =

pn
pn−1

.

Thus pn
pn−1

= [an, . . . , a1, a0] are the convergents of the number β = [an, . . . , a1, a0] and β

is fixed by the Ãn where An =

[
qn pn
qn−1 pn−1

]
. Thus

β =

[
qn pn
qn−1 pn

]
(β).

Then β > 1, hence − 1
β
∈ (−1, 0). Moreover, β is a root of the polynomial pn−1X

2 −
(qn−1 − pn)X − qn. Replacing X → −1/X we see that −1/β is a root of the polynomial

f(X) = qnX
2 − (pn − qn−1)X − pn−1.

But

α = M̃n(α) =

[
pn pn−1
qn qn−1

]
(α)

is also a root of f(X). Since α > 1 and −1/β < 0 they cannot be equal, so they have to be
the two roots of f(X). It follows that α′ = −1/β ∈ (−1, 0) and α is reduced. We have also
obtained that

− 1

α′
= β = [an, . . . , a1, a0].

Conversely, assume that α is reduced. Assume that α is not purely periodic. But since
it is still a quadratic irrational, Theorem 9.20 tells us that the continued fraction of α is of
the form

α = [a0, . . . , an, an+1, . . . , am]

with m > n and am 6= an. By Lemma 9.23, we know that for each k ≥ 1 the quadratic
irrational αk = [ak, ak+1, . . . ] is reduced. In particular, αn is reduced. But

αn = [an, an+1, . . . , am] = an +
1

αn+1

.

Therefore

α′n = an +
1

α′n+1

∈ (−1, 0) =⇒ an < −
1

α′n+1

< an + 1. (9.11)
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On the other hand,
αn+1 = [an+1, . . . , am] = αm+1.

We also know that

αm = am +
1

αm+1

is reduced, so

α′m = am +
1

α′m+1

= am +
1

α′n+1

∈ (−1, 0) =⇒ am < − 1

α′n+1

< am + 1. (9.12)

Comparing inequalities (9.11) and (9.12) we see that an = am, a contradiction.

Proof of Theorem 9.21 (i). In fact we will prove that the continued fraction of α =
√
r for

r ∈ Q>0 not a square is of this form. Since r is not a square, α is irrational, so it has an
infinite continued fraction

α = [a0, a1, . . . ] .

Then

α = a0 +
1

α1

, where α1 =
1

α− a0
= [a1, a2, . . . ] .

By Example 9.22, we know that α+ a0 is reduced, and by Theorem 9.24, it has a purely
periodic continued fraction

α + a0 = [2a0, b1, . . . , bm ]. (9.13)

Since α′ = −α, we also have

α1 =
1

α− a0
= − 1

a0 − α
= − 1

a0 + α′
= [bm, . . . , b1, 2a0 ]. (9.14)

Comparing (9.13) and (9.14), we see that bi = bm−i for 1 ≤ i ≤ m− 1 and bm = 2a0.

Remark 9.25. The converse is also true: if α = [a, b1, . . . , bm−1, 2a] with bi = bm−i for
1 ≤ i ≤ m− 1, then α =

√
r for some r ∈ Q>0 not a square.

Proof. If (9.13) and (9.14) both hold, then

1

α− a0
= − 1

a0 + α′
=⇒ α′ = −α.

Proof of Theorem 9.21 (ii). Consider the continued fraction expansion of α =
√
d

α =
√
d = [a, b1, . . . , bm−1, 2a].

Then
α + a = [2a, b1, . . . , bm−1]
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is purely periodic. Let n = km for k ≥ 1. Then

α + a = [2a, b1, . . . , bm−1, . . . , 2a, b1, . . . , bm−1, α + a].

In the matrix version, the first 2a plays a different role than the others. To understand
this, let us fix some notation. We will denote Mn the matrices corresponding to the continued
fraction of α and by An the ones corresponding to β = α + a. Then

Am =

[
0 1
1 0

] [
0 1
1 2a

] [
0 1
1 b1

]
. . .

[
0 1
1 bm−1

]
=

[
1 2a
0 1

] [
0 1
1 b1

]
. . .

[
0 1
1 bm−1

]
can be rewritten as

Am−1 =

[
1 a
0 1

] [
1 a
0 1

] [
0 1
1 b1

]
. . .

[
0 1
1 bm−1

]
=

[
1 a
0 1

]
Mm−1.

Thus

Ãm−1 = Am−1

[
0 1
1 0

]
=

[
1 a
0 1

]
M̃m−1

fixes α + a, i.e.
Ãm−1(α + a) = α + a.

It follows that α is fixed by the matrix

M =

[
1 −a
0 1

]
Ãm−1

[
1 a
0 1

]
= M̃m−1

[
1 a
0 1

]
=

[
pm−1 pm−2
qm−1 qm−2

] [
1 a
0 1

]
=

[
pm−1 pm−2 + apm−1
qm−1 qm−2 + aqm−1

]
.

Recall that if α is fixed by the integer matrix

M ′ =

[
A B
C D

]
,

then
Cα2 − (A−D)α−B = 0.

On the other hand, our particular α =
√
d is a root of the quadratic equation

x2 − d = 0.

Hence we must have A = D and B = α2C for any matrix M ′ =

[
A B
C D

]
that fixes α. Thus

our matrix

M =

[
pm−1 pm−2 + apm−1
qm−1 qm−2 + aqm−1

]
=

[
pm−1 dqm−1
qm−1 pm−1

]
.

Looking at its determinant we see that

detM = p2m−1 − dq2m−1 = det M̃m−1 = (−1)m

and (ii) is proved.
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Proposition 9.26. Let α be an positive irrational number and a, b be coprime positive inte-
gers.

(i ) Suppose |a− bα| ≤ |pn − qnα| and 0 < b < qn+1. Then b = qn and a = pn. Assume a, b
are coprime positive integers such that∣∣∣a

b
− α

∣∣∣ < 1

2b2
.

Then a
b

is one of the convergents sn of the continued fraction of α.

(ii ) Assume ∣∣∣a
b
− α

∣∣∣ < 1

2b2
.

Then a
b

is one of the convergents sn of the continued fraction of α.

Proof. (i) The matrix

Mn+1 =

[
pn pn+1

qn qn+1

]
had determinant ±1, so the 2× 2 linear system{

upn + vpn+1 = a

uqn + vqn+1 = b

has integer solution (u, v). Note that u, v cannot both be positive as that would make b ≥
qn+1. As a, b are positive, and so are pn, pn+1mqn, qn+1, we cannot have both u and v negative.
Thus uv ≤ 0.

We have

|a− bα| = |upn + vpn+1 − (uqn + vqn+1)α| = |u(pn − qnα) + v(pn+1 − qn+1α)|.

Since consecutive convergence lie on opposite sides of α and uv ≤ 0, we must have
u(pn − qnα) and v(pn+1 − qn+1α) of the same sign or one of them equal to zero. Therefore
the absolute value of their sum is actually equal to the sum of the absolute values and

|pn − qnα| ≥ |a− bα| = |u(pn − qnα)|+ |v(pn+1 − qn+1α)| =⇒

{
either |u| = 1 and v = 0

or u = 0

If u = 0, then we must have b = vqn+1 ∈ (0, qn+1) which is a contradiction. Hence v = 0 and
u = ±1. But b = qqn and b, qn > 0, so u = 1. Thus b = qn and a = pn.

(ii) As the denominators qn form an increasing unbounded sequence, there exists n ≥ 0
such that qn ≤ b < qn+1. Part (i) tells us that the best rational approximation of α with
denominator < qn+1 is sn = pn

qn
. Thus we have

1

2b
> |bα− a| ≥ qn

∣∣∣α− a

b

∣∣∣ ≥ qn|α− sn| = |qnα− pn|.
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Hence |x− sn| < 1
2bqn

. Now suppose that a/b is not a convergent of α, so a
b
6= sn. Thus

1

bqn
≥ |bpn − aqn|

bqn
=
∣∣∣sn − a

b

∣∣∣ ≤ |sn − α|+ ∣∣∣α− a

b

∣∣∣ < 1

2bqn
+

1

2b2
.

This implies b < qn, which is a contradiction.

Proposition 9.27. Let α =
√
d /∈ Q for a positive integer d. Then for all n ≥ 0,

αn =
An +

√
d

Cn

for some integers An, Cn with Bn > 0. Moreover

p2n−1 − dq2n−1 = (−1)nCn and pnpn−1 − qnqn−1 = (−1)nAn+1. (9.15)

Proof. α0 =
√
d. Then

α1 =
1√

d− a0
=
a0 +

√
d

d− a20
and since d2 − a0 > 0 we are done. Note that C0 = 1 and A0 = 0 and so C0 | d − A2

0. Also

C1 = d− a20 =
d−A2

0

C0
and A1 = a0 = a0C0 − A0. Hence C1 | d− A2

1.
An induction argument shows that, for i ≥ 1 we have

• 1 < αi =
Ai +

√
d

Ci

• Ci+1 = aiCi − Ai ∈ Z

• Ci+1 =
d− A2

i+1

Ci
∈ Z

• Ci | d− A2
i

• Ci 6= 0 (this comes down to
√
d /∈ Q.)

• Ci > 0

• 0 <
√
d− Ai < Ci <

√
d+ Ai < 2

√
d.

• p2i−1 − dq2i−1 = (−1)iCi
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• pipi−1 − qiqi−1 = (−1)iAi+1

Proof of Theorem 9.21 (iii ) and (iv ). From Theorem 9.21, part (ii), we know that the given
pair {

(p, q) if m is even

(p2 + dq2, 2pq) if m is odd

satisfies Pell’s equation x2 − dy2 = 1 and that if m is odd, then (p, q) is a solution of the
second Pell equation x2 − dy2 = −1.

Let (x, y) be a solution to Pell’s equation x2 − dy2 = ±1 with x > 1, y ≥ 0.
Then ∣∣∣∣xy −√d

∣∣∣∣ =
1

|y(x+ y
√
d)|

=
1

y2(
√
d+

√
1/y2 + d)

.

Note that
√
d+

√
1/y2 + d > 2

√
d > 2 and the above equality implies that∣∣∣∣xy −√d

∣∣∣∣ < 1

2y2
.

By Proposition 9.26, this implies that x/y is a convergent for
√
d, i.e. there exists n ≥ 0

such that x = pn and y = qn.
Now want to show that αn ∈ Z[

√
d] only when n is a multiple of m. But αn ∈ Z[

√
d] ⇐⇒

Cn = 1 =⇒ λn+1 = αn − an = An+
√
d

Cn
− an = (An − an) +

√
d. As λn+1 ∈ (0, 1) it follows

that An − an = −b
√
dc and λn+1 =

√
d− b

√
dc = λ1. Thus n is multiple of the period m of√

d.
Thus (9.15) implies that (pn−1, qn−1) is a solution of the Pell’s equation

x2 − y2d = 1

if and only if n is a multiple of m and n is even. As pm−1 = p and qm−1 = q and p2m−1 +
q2m−1

√
d = (pm−1 +qm−1

√
d)2 part (iii) is proved. The same relation (9.15) also implies that

(pn−1, qn−1) is a solution of the other Pell equation

x2 − dy2 = −1

if and only if n is a multiple of m and n is odd. Note that m has odd multiples only when
it is odd itself, so (iv) is proved as well.

9.4 Other applications of continued fractions

Continued fractions crop up in many areas of number theory besides the standard application
to Pell’s equation. They can be used to break RSA encryption if the decryption key is
too small, prove sum of two squares theorems, to recognize rational numbers, or to prove
transcendence results.
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RSA Encryption

Recall that in RSA encryption, Bob picks two large primes p and q that satisfy p < q < 2p.
Then he computes N = pq. (The inequality is necessary when doing cryptography, since
there are specialized factoring algorithms that can exploit when N is a product or primes of
significantly different magnitude.) Using the factorization of N, Bob picks encryption and
decryption keys e and d that satisfy e ≡ d−1(mod φ(N)). Bob publishes N and e, but keeps
d, p and q secret. To encrypt a message m, Alice encodes it as a number modulo N and
gives Bob c ≡ me(mod N). Bob calculates cd ≡ m(mod N) to decrypt the message. There
is no known way to recover the message in general without factoring N and no known way
to factor N efficiently.

However, if it so happens that 3d < N1/4, any adversary can find e using only N and e.
Let kinZ≥0 such that ed− 1 = kφ(N). Since e < φ(N), we have k < d. Given that we chose
p < q < 2p, we have p <

√
pq =

√
N and q <

√
2N. Thus p+ q < 3

√
N and∣∣∣∣ eN − k

d

∣∣∣∣ ≤ |kφ(N) + 1−Nk|
Nd

=
|k(N − p− q + 1) + 1−Nk|

Nd
=
k(p+ q − 1) + 1

Nd
≤ 3k

d
√
N
<

1

3d2
.

This inequality implies that k
d

is a convergent to e
N

(by Proposition 9.26). Using the publicly
available e and N , an adversary can use the Euclidean algorithm to find all the convergents
with denominator less than N in time poly-logarithmic in N . For each convergent, use its
numerator and denominator as a guess for k and d, and calculate what φ(N) should be.
Since p and q satisfy the quadratic

x2 − (N − φ(N) + 1)x+ n = 0,

the correct guess of φ(N) will give the factorization of N.

Recognizing Rational Numbers

Continued fractions also give a way to recognize decimal approximations of rational numbers.
Since a rational number has a finite continued fraction, to check whether a given decimal
approximation probably comes from a rational number, run the continued fraction algorithm
on the decimal approximation. If the decimal is approximating a rational, when the continued
fraction algorithm should have terminated after the nth step, there will instead be a very
tiny error between [a0, a1, . . . , an] and the decimal approximation. This will result in a huge
value for the an+1. Looking for huge ai provides a way to find possible rational numbers that
the decimal would be approximating.

For example, a simple calculation shows that

1003

957
= [1, 20, 1, 4, 9].

Approximating the fraction to 100 binary digits gives

1.0480668756530825496342737722 .
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Changing the last digit to a 3 and running the continued fraction algorithm (with a computer,
of course) gives

[1, 20, 1, 4, 9, 10789993838034437479169],

so we can identify it as the fraction

[1, 20, 1, 4, 9] =
1003

957
.

Note that the fraction is identified although the decimal expansion has not started repeating.

10 Primes of the form p = x2 + ny2

In Section 7.2 we proved that a prime p can be written as the sum of two squares if and
only if p = 2 or p ≡ 1 (mod 4). One direction was easy, but the other one was completely
non-trivial. The proof consisted of two steps.

Reciprocity step: A prime p ≡ 1 (mod 4), then it divides N = a2 + b2 with a and b
relatively prime integers.

The proof was a bit ad-hoc. We used the fact that 4 | φ(p) to find an integer a for
which a2 + 1 ≡ 0 (mod p).

Descent step: If a prime p divides a number N of the form N = a2 + b2, where (a, b) = 1,
then p itself can be written as p = x2 + y2 for some (x, y) = 1.

This step was based on Lemma 7.6 which said that if a prime q = x2+y2 divides a sum
of squares a2 + b2 = N with (a, b) = 1, then N/q can be written as a sum of relatively
prime squares.

Furthermore, we used in an essential way the fact that if a number N is the sum of
two squares, then all its prime divisors can be written as sums of two squares.

One can look at other questions of this type. For instance, Fermat himself stated (and Euler
proved) the following two results.

Theorem 10.1. A prime p is of the form p = x2 + 2y2 if and only if p = 2 or p ≡ 1 or 3
(mod 8).

Theorem 10.2. A prime p is of the form p = x2+3y2 if and only if p = 3 or p ≡ 1 (mod 3).

Again, it is easy to show that if the prime has the given form in terms of squares, then
it lands in the desired congruence class. For the other direction, let us try to imitate the
procedure from Section 7.2.
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Descent step

We start by considering the generalization of the Lemma 7.6. This is the first component of
our descent step.

Lemma 10.3. Fix n ∈ Z>0. Suppose M is an integer of the form M = a2 + nb2 with
(a, b) = 1 and that q = x2 + ny2 is a prime divisor of M. Then there exist integers (c, d) = 1
such that M/q = c2 + nd2.

Proof. The general case is one of the homework problems. Here we discuss only the proof in
the case n = 2.

We know that M = a2 + 2b2, (a, b) = 1, q = x2 + 2y2 is prime and q |M. Since q is prime
x and y are forced to be relatively prime. Just as in the proof of Lemma 7.6 we look at

x2M − 2b2q = x2(a2 + 2b2)− 2b2(x2 + 2y2) = (ax− 2by)(ax+ 2by).

Since q | (x2M − 2b2q) it follows that q | (ax − 2by) or q | (ax + 2by). Without loss of
generality (we can always change the sign of b), we can assume that

q | ax− 2by.

Thus, there exist an integer d such that ax− 2by = dq. We can rewrite this as

2by = ax− dq = ax− dx2 − 2dy2,

which implies that x | 2y(b+ dy). Not only is x relatively prime to y, but it is also odd (if x
is even then q cannot be prime). Therefore x | (b+ dy), so

b+ dy = cx

for some integer c. On the other hand, 2cxy = 2y(b+ dy) = x(a− dx), so

a− dx = 2cy.

But then

M = a2 + 2b2 = (dx+ 2cy)2 + 2(cx− dy)2 = (x2 + 2y2)(c2 + 2d2) = q(c2 + 2d2).

Note that since (a, b) = 1 we must also have (c, d) = 1.

And now we try to reproduce the second component of the descent step. That is we
would like to say that

p prime, p | a2 + nb2 with (a, b) = 1 =⇒ p = x2 + ny2. (10.1)

As in the Section 7.2 we can assume that

|a|, |b| ≤ p

2
.
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Then, if p is odd

a2 + nb2 <
n+ 1

4
p2.

If n ≤ 3, this implies that a2 +nb2 < p2 and therefore any prime divisor q 6= p of a2 +nb2

has to be q < p. Now we can complete the descent step using the same argument as in
Section 7.3.2.

For n = 1 : done in Section 7.3.2.

For n = 2 : assume that p cannot be written as

x2 + 2y2. (10.2)

If all the other prime divisors of a2 + 2b2 could be written in the form (10.2), then Lemma
10.3 would imply that p can also be written as in (10.2) and we assumed that this is not
the case. (Here we used that p2 - a2 + 2b2 because a2 + 2b2 < p2.) Hence there must exist
a prime divisor p1 6= p of a2 + 2b2 that cannot be expressed as (10.2). But we have seen
that any other prime divisor p1 of a2 + 2b2 has to be p1 < p. By the same argument now
there must exist yet another prime p2 < p1 < p that cannot be written in the given form
(10.2). And then another, and another. . . There is nothing to prevent us from repeating this
process indefinitely (note that 2 is of the desired form) and thus we get an infinite decreasing
sequence of positive (and prime) numbers. This contradiction finishes the descent step.

For n = 3 : see the homework problems.

Note that (10.1) cannot hold in general. For instance, in the case n = 5 we see that
3 | 21 = 12 + 5 · 22, but 3 cannot be written as x2 + 5y2. So we need to figure out how the
prime divisors of a2 +nb2 can be represented. The answer will come from Legendre’s theory
of reduced quadratic forms.

Reciprocity step

We need to find congruence conditions which will guarantee that p | x2 + ny2 for some
(x, y) = 1.

The problem is that we cannot adapt directly our proof from the n = 1 case (Section
7.2). This is because our proof was done in an ad-hoc manner. Namely, to recap, we said
that if p ≡ 1 (mod 4), then φ(p) = 4k for some integer k. Therefore the polynomial X4k − 1
has 4k roots (mod p). But

X4k − 1 = (X2k − 1)(X2k + 1).

Since X2k−1 can have at most 2k roots (mod p), it follows that there must exist an integer
(a, p) = 1 such that a2k+1 ≡ 0 (mod p). Thus p | (ak)2 +12 and since ak and 1 are relatively
prime, we are done.

But this cannot be replicated directly for n = 2 for instance.
One more thing that is worth noticing. We have the following conjectures (due to Fermat).
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• n = 1 : p ≡ 1 (mod 4) =⇒ p | a2 + b2 for some (a, b) = 1.

• n = 2 : p ≡ 1, 3 (mod 8) =⇒ p | a2 + 2b2 for some (a, b) = 1.

• n = 3 : p ≡ 1 (mod 3) =⇒ p | a2 + 3b2 for some (a, b) = 1.

The key observation is that these are all congruences modulo 4n. (The last one can be
restated as p ≡ 1, 7 (mod 12).) And indeed, we are going to find conditions (mod 4n) that
would ensure that a prime p is of the form x2+ny2. A systematic approach will be formulated
in terms of the Legendre symbol (see Section 11).

11 Quadratic reciprocity

11.1 Legendre symbol

In this section p will be an odd prime.

Definition. An integer a 6≡ 0 (mod p) is called a quadratic residue modulo p if there exist
x ∈ Z such that x2 ≡ a (mod p); otherwise the integer a 6≡ 0 (mod p) is called a quadratic
nonresidue modulo p.

Note that the definition depends only on the residue class of a (mod p).

Example

p = 3 p = 5 p = 7
quadratic residues 1 1, 4 1, 2, 4
quadratic nonresidues 2 2, 3 3, 5, 6

Lemma 11.1. In any reduced residue system modulo p, there are exactly p−1
2

quadratic

residue and p−1
2

quadratic nonresidues.

Proof. Exercise.

Note: We could try to make a similar definition modulo an odd positive integer n. But
Lemma 11.1 would not hold. For instance, if we take n = 15 we have 8 modulo classes
relatively prime to 15 : 1, 2, 4, 7, 8, 11, 13, 14. But only 1 and 4 are quadratic residues.

Definition. The Legendre symbol modulo p is the function Z→ C given by

(
a

p

)
=


0 if p | a
1 if p - a and a is a quadratic residue (mod p)

−1 if p - a and a is a quadratic nonresidue (mod p).
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Example (
1

3

)
= 1

(
2

3

)
= −1

(
−43

3

)
=

(
2

3

)
= 1

(
2

7

)
= 1

(
14

7

)
= 0

In general

(
1

p

)
= 1 for any odd prime p.

The connection to the reciprocity step in Section 10 is provided by the following fact.

Proposition 11.2. Let n be an integer relatively prime to p. Then

p | a2 + nb2 for some integers (a, b) = 1 ⇐⇒
(
−n
p

)
= 1.

Proof. First assume that there exist integers (a, b) = 1 such that a2+nb2 ≡ 0 (mod p). Since
a and b are relatively prime, it follows that b 6≡ 0 (mod p). Therefore there exist c ∈ Z such
that bc ≡ 1 (mod p). But then

a2c2 + n ≡ 0 (mod p) =⇒
(
−n
p

)
= 1.

The other direction is even simpler. Since −n is a quadratic residue (mod p), there exists
an integer a such that a2 ≡ −n (mod p). Hence p | a2 + n · 12 and (a, 1) = 1.

Corollary 11.3. (
−1

p

)
= (−1)

p−1
2 =

{
1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4).

Proof. Follows immediately from Proposition 11.2 and Theorem 7.4.

Lemma 11.4 (Euler’s criterion). (
a

p

)
≡ a

p−1
2 (mod p).

Proof. If p | a we get 0 on both sides and the equality holds.

If p - a, then ap−1 ≡ 1 (mod p), so a
p−1
2 ≡ ±1 (mod p). We have two cases.

• If

(
a

p

)
= 1, there exists x 6≡ 0 (mod p) such that a ≡ x2 (mod p), so

a
p−1
2 ≡ xp−1 (mod p) ≡ 1 (mod p) ≡

(
a

p

)
(mod p).
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• If

(
a

p

)
= −1, it is enough to show that a

p−1
2 6≡ 1 (mod p). Consider the polynomial

f(X) = X
p−1
2 − 1.

It has at most p−1
2

roots modulo p. On the other hand, we have seen from the previous
case that all the quadratic residues are roots of f(X). By Lemma 11.1, there are exactly
p−1
2

quadratic residues (mod p). Hence no quadratic nonresidue can be a root of f(X),
and we are done.

Proposition 11.5. The Legendre symbol modulo p is a completely multiplicative function.

Proof. We apply Euler’s criterion twice.(
a

p

)(
b

p

)
≡ a

p−1
2 · b

p−1
2 (mod p) ≡ (ab)

p−1
2 (mod p) ≡

(
ab

p

)
(mod p).

The result follows since 1 6≡ −1 (mod p) and 0 6≡ ±1 (mod p).

Proposition 11.6. (
2

p

)
= (−1)

p2−1
8 =

{
1 p ≡ ±1 (mod 8)

−1 p ≡ ±3 (mod 8).

Proof. By Euler’s criterion we know that(
2

p

)
≡ 2

p−1
2 (mod p).

There are exactly p−1
2

even integers between 1 and p. We have the following congruences for
them.

p− 1 ≡ 1(−1)1 (mod p) 2 ≡ 2(−1)2 (mod p)
p− 3 ≡ 3(−1)3 (mod p) 4 ≡ 4(−1)4 (mod p)
...

...

One of the columns will end with either p− p−1
2

or p−1
2

(whichever one is even). Taking
the product of all these relations we obtain

2 · 4 · · · (p− 1) ≡
(
p− 1

2

)
!(−1)1+2+...+ p−1

2 (mod p),

which can be rewritten as

2
p−1
2

(
p− 1

2

)
! ≡

(
p− 1

2

)
!(−1)

p2−1
8 (mod p).
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Since p -
(
p−1
2

)
! this simplifies to

2
p−1
2 ≡ (−1)

p2−1
8 (mod p)

and the desired result follows.

Corollary 11.7.

p | a2 + 2b2 for some integers (a, b) = 1 ⇐⇒ p ≡ 1, 3 (mod 8).

Proof. By Proposition 11.2 we know that

p | a2 + 2b2 for some integers (a, b) = 1 ⇐⇒
(
−2

p

)
= 1,

so all we need to do is figure out for which residue classes (mod 8) the Legendre symbol(−2
p

)
is equal to 1. Since the Legendre symbol is completely multiplicative we have(
−2

p

)
= 1 ⇐⇒

(
−1

p

)(
2

p

)
= 1 ⇐⇒

(
−1

p

)
=

(
2

p

)
⇐⇒ (−1)

p−1
2 = (−1)

p2−1
8 .

In other words, we need to see when

p− 1

2
≡ p2 − 1

8
(mod 2).

If p = 8k + 1, then
p− 1

2
= 4k,

p2 − 1

8
= 8k2 + 2k both even

If p = 8k + 3, then
p− 1

2
= 4k + 1,

p2 − 1

8
= 8k2 + 6k + 1 both odd

If p = 8k + 5, then
p− 1

2
= 4k + 2,

p2 − 1

8
= 8k2 + 10k + 3 one even, one odd

If p = 8k + 7, then
p− 1

2
= 4k + 3,

p2 − 1

8
= 8k2 + 14k + 6 one odd, one even

The above Corollary, together with the descent step for n = 2 that we proved in Section 10,
proves Theorem 10.1.

Lemma 11.8 (Gauss’s Lemma). Assume n 6≡ 0 (mod p). For 1 ≤ t ≤ p−1
2

denote by xt the
remainder of the division of tn by p. Let

m = #

{
xt;xt >

p

2
, 1 ≤ t ≤ p− 1

2

}
.

Then (
n

p

)
= (−1)m.
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Proof. Denote r =
p− 1

2
.

First note that x1, . . . , xr are distinct integers between 1 and p − 1. Indeed, since they
are remainders to divisions by p, then have to be 0 ≤ xt ≤ p− 1.

On the other hand, since p - n, p cannot divide any of the integers

n, 2n, 3n, . . . ,
p− 1

2
n.

So xt ≥ 1 for all 1 ≤ t ≤ p− 1

2
. On the other hand, if xt = xs for some 1 ≤ s, t ≤ p−1

2
, we

must have tn ≡ sn (mod p). This means p | t− s and given the range of possible values for
s and t, the only way this could happen is for s = t.

Denote by A the set of xt’s that are < p/2 and by B the set of xt’s that are > p/2.
Note that by definition m = #B. Denote k = #A. Since A ∪ B = {x1, . . . , xr} and

A ∩B = ∅ and not two xt’s are the same, it follows that

k +m = r =
p− 1

2
.

Denote by a1, . . . , ak the elements of A and by b1, . . . , bm the elements of B. Let

C = {c1, . . . , cm} where cj = p− bj, 1 ≤ j ≤ m.

Then #C = m and both

A,C ⊂
{

1, 2, . . . ,
p− 1

2

}
. (11.1)

Claim A ∩ C = ∅.
If we had ai = cj for some 1 ≤ i ≤ k and some 1 ≤ j ≤ m, then ai + bj = p. By the very

definition of the sets A and B, there exist integers 1 ≤ s, t ≤ p− 1

2
such that ai = xs ≡ sn

(mod p) and bj = xt ≡ tn (mod p). Therefore

sn+ tn ≡ 0 (mod p).

Since (n, p) = 1, this means that p | s+ t. But this is impossible given that 0 < s+ t ≤ p−1.
The claim implies that

#A ∪ C = m+ k =
p− 1

2
. (11.2)

Taken together, (11.1) and (11.2) imply that

A ∪ C =

{
1, 2, . . . ,

p− 1

2

}
.

Therefore the product of all elements of A ∪ C is
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a1 · · · akc1 · · · cm =

(
p− 1

2

)
!

Therefore

(
p− 1

2

)
! ≡ a1 · · · ak(−b1) · · · (−bm) (mod p) ≡ (−1)ma1 · · · akb1 · · · bm (mod p)

Going back to the definition of the sets A and B, this can be rewritten as(
p− 1

2

)
! ≡ (−1)m

∏
1≤t≤r

xt (mod p) ≡ (−1)m
∏

1≤t≤r

tn (mod p).

Hence (
p− 1

2

)
! ≡ (−1)mn

p−1
2

(
p− 1

2

)
! (mod p).

Since
(
p−1
2

)
! 6≡ 0 (mod p), multiplying both sides by (−1)m gives us

(−1)m ≡ n
p−1
2 (mod p),

and the result follows from Euler’s criterion (Lemma 11.4).

Note that we are interested only in the parity of m. The following result deals with said
parity.

Proposition 11.9. Let n be an integer not divisible by p. With the same notation as in
Gauss’s Lemma 11.8, we have

m ≡

(n− 1)
p2 − 1

8
+

∑
1≤t≤ p−1

2

⌊
tn

p

⌋ (mod 2).

In particular, if n is odd, then

m ≡

 ∑
1≤t≤ p−1

2

⌊
tn

p

⌋ (mod 2).

Proof. Denote

γ =
∑

1≤t≤ p−1
2

⌊
tn

p

⌋
.
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We will use the same notation from the proof of Gauss’s Lemma 11.8. For each 1 ≤ t ≤ p−1
2
,

we have
tn

p
=

⌊
tn

p

⌋
+

{
tn

p

}
and the fractional part is strictly between 0 and 1. It follows that

xt = p

{
tn

p

}
=
tn

p
−
⌊
tn

p

⌋
. (11.3)

Recall that we defined sets A = {a1, . . . , ak}, B = {b1, . . . , bm} and C = {c1, . . . , cm}
with cj = p − bj, 1 ≤ j ≤ m. By definition, A and B are disjoint and their union is{
xt; 1 ≤ t ≤ p−1

2

}
, so

k∑
i=1

ai +
m∑
j=1

bj =
∑

1≤t≤ p−1
2

xt.

Let α =
k∑
i=1

ai and β =
m∑
j=1

bj. Substituting (11.3) above we get that

α + β =

 ∑
1≤t≤ p−1

2

tn

− p
 ∑

1≤t≤ p−1
2

⌊
tn

p

⌋ = n
p2 − 1

8
− pγ. (11.4)

We have also seen that the sets A and C are disjoint and their union is
{

1, 2, . . . , p−1
2

}
.

Therefore
k∑
i=1

ai +
m∑
j=1

cj =
∑

1≤t≤ p−1
2

t =
p2 − 1

8
.

We can rewrite this as

α +
m∑
j=1

(p− bj) =
p2 − 1

8
,

which implies that

α− β + pm =
p2 − 1

8
. (11.5)

Adding up (11.4) and (11.5) yields

2α + pm = (n+ 1)
p2 − 1

8
− pγ.

When we reduce this mod 2, taking into account that p is odd, we obtain

m ≡ pm (mod 2) ≡ (n+ 1)
p2 − 1

8
− pγ (mod 2) ≡ (n− 1)

p2 − 1

8
+ γ (mod 2).
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Theorem 11.10 (Quadratic reciprocity law). If p and q are odd primes, then(
p

q

)
= (−1)

(p−1)(q−1)
4

(
q

p

)
.

Proof. If the two primes are equal, the relation obviously holds. If they are different, then
the Legendre symbols are nonzero, and so the relation is equivalent to(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4. (11.6)

By Gauss’s Lemma 11.8 and Proposition 11.9, the two Legendre symbols are

(
q

p

)
= (−1)m1 where m1 ≡

∑
1≤t≤ p−1

2

⌊
tq

p

⌋
(mod 2);

(
p

q

)
= (−1)m2 where m2 ≡

∑
1≤s≤ q−1

2

⌊
sp

q

⌋
(mod 2).

Hence (11.6) would follow if we proved that∑
1≤t≤ p−1

2

⌊
tq

p

⌋
+

∑
1≤s≤ q−1

2

⌊
sp

q

⌋
=
p− 1

2

q − 1

2
. (11.7)

To this end, consider the function f(x, y) = qx−py on the domain |x| < p
2
, |y| < q

2
. A couple

of observations about f(x, y) are in order.

• x, y ∈ Z =⇒ f(x, y) ∈ Z.

• (x1, y1) 6= (x2, y2) pairs of integers in our domain =⇒ f(x1, y1) 6= f(x2, y2).

The first observation is immediate. For the second, note that, if f(x1, y1) = f(x2, y2) then
q(x1 − x2) = p(y1 − y2). Thus p | x1 − x2 and q | y1 − y2. Given the range in which these
integers live, this is possible only if x1 − x2 = 0 and y1 − y2 = 0.

Therefore f(x, y) takes p−1
2
· q−1

2
nonzero values as the integer x ranges from 1 to p−1

2
and

the integer y ranges from 1 to q−1
2
. Now we count the number of positive and negative values

of f(x, y) in this range. Fix the integer 1 ≤ x ≤ p−1
2
. Then

f(x, y) > 0 ⇐⇒ qx > py ⇐⇒ y <
qx

p
⇐⇒ 1 ≤ y ≤

⌊
tx

p

⌋
and so, the number of positive values that f(x, y) takes is precisely∑

1≤x≤ p−1
2

⌊
tx

p

⌋
.
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Similarly, fix an integer 1 ≤ y ≤ q−1
2
. Then

f(x, y) < 0 ⇐⇒ qx < py ⇐⇒ x <
py

q
⇐⇒ 1 ≤ x ≤

⌊
py

q

⌋
,

and the number of negative values that f(x, y) takes is∑
1≤y≤ q−1

2

⌊
py

q

⌋
.

Therefore (11.7) holds and the theorem is proved.

Note: This proof has a nice interpretation in terms of lattice points in the plane. Find it!

Example: Determine whether 583 is a quadratic residue or nonresidue (mod 907).

(
583

907

)
=

(
11

907

)(
53

907

)
= (−1)

11−1
2

907−1
2

(
907

11

)
(−1)

53−1
2

907−1
2

(
907

53

)
= −

(
5

11

)(
6

53

)
= −(−1)

5−1
2

11−1
2

(
11

5

)(
2

53

)(
3

53

)
= −

(
1

5

)
(−1)

(53−1)(53+1)
8 (−1)

53−1
2

3−1
2

(
53

3

)
=

(
2

3

)
= −1

Therefore 583 is a quadratic nonresidue (mod 907).
Now we are ready to prove the reciprocity step for primes of the form x2 + 3y2. For that,

we need to figure out for which primes 3 is a quadratic residue, and for which it is not. For
p > 3 we have (

3

p

)
= (−1)

3−1
2

p−1
2

(
p

3

)
= (−1)

p−1
2

(
p

3

)
.

The first factor yields a condition modulo 4, while the second yields a condition modulo 3.
Thus we need to look at congruence classes modulo 12. There are four cases.

p (mod 12) p (mod 4) p (mod 3) (−1)
p−1
2

(
p

3

) (
3

p

) (
−3

p

)
1 1 1 1 1 1 1
5 1 2 1 −1 −1 −1
7 3 1 −1 1 −1 1
11 3 2 −1 −1 1 −1

Here we used the fact that(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(
3

p

)
.

Therefore, Proposition 11.2 implies the reciprocity step for n = 3 below.
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Proposition 11.11. Let p > 3 be a prime. Then

p | a2 + 3b2 for some integers (a, b) = 1 ⇐⇒ p ≡ 1, 7 (mod 12).

The above result, together with the descent step outlined in Problem 4 of Homework 8,
prove Theorem 10.2.

The general problem of which primes can be written as x2 + ny2 with n a fixed positive
integer is more complicated though. However, quadratic reciprocity allows us to get closer
to our goal of understanding the reciprocity step.

Proposition 11.12. If p and q are distinct odd primes, then(
q

p

)
= 1 ⇐⇒ p ≡ ±a2 (mod 4q) for some odd integer a.

Proof. Let p∗ = (−1)
p−1
2 p. Then(

p∗

q

)
=

(
(−1)(p−1)/2p

q

)
=

(
−1

q

) p−1
2
(
p

q

)
.

But we know that (
−1

q

)
= (−1)

q−1
2 ,

and therefore (
p∗

q

)
= (−1)

p−1
2

q−1
2

(
p

q

)
.

By quadratic reciprocity (Theorem 11.10),(
p∗

q

)
=

(
q

p

)
.

Therefore it remains to prove that(
p∗

q

)
= 1 ⇐⇒ p ≡ ±a2 (mod 4q) for some odd integer a.

The proof of this last equivalence is left as an exercise.

11.2 Jacobi symbol

In order to move forward toward our goal of completing the reciprocity step in Euler’s
strategy we need to extend the Legendre symbol beyond primes. This extension is due to
Jacobi.

Definition. Let m be an odd positive integer.
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• If m = 1, the Jacobi symbol

(
1

)
: Z→ C is the constant function 1.

• If m > 1, it has a decomposition as a product of (not necessarily distinct) primes

m = p1 · · · pr. The Jacobi symbol

(
m

)
: Z→ C is given by

(
a

m

)
=

(
a

p1

)
· · ·
(
a

pr

)
.

Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and
nonresidues. That is, we could have

(
a
m

)
= 1 just because two of the factors happen to be

−1. For instance, (
2

15

)
=

(
2

3

)(
2

5

)
= (−1)(−1) = 1,

but 2 is not a square modulo 15. The following properties of the Jacobi symbol are direct
consequences of its definition.

Proposition 11.13. Let m,n be positive odd integers and a, b ∈ Z. Then

(i)

(
1

m

)
= 1;

(ii)

(
a

m

)
= 0 ⇐⇒ (a,m) > 1;

(iii) a ≡ b (mod m) =⇒
(
a

m

)
=

(
b

m

)
;

(iv)

(
ab

m

)
=

(
a

m

)(
b

m

)
;

(v)

(
a

mn

)
=

(
a

m

)(
a

n

)
;

(vi) (a,m) = 1 =⇒
(
a2b

m

)
=

(
b

m

)
.

Proof. Exercise.

Theorem 11.14. Let m,n be positive odd integers. Then

(i)

(
−1

m

)
= (−1)

m−1
2 ;

(ii)

(
2

m

)
= (−1)

m2−1
8 ;

68



(iii)

(
n

m

)
= (−1)

m−1
2

n−1
2

(
m

n

)
.

Proof. The first two formulas are trivially true when m = 1 and so is the third if m = 1 or
n = 1 or if (m,n) > 1. We assume that m,n > 1 and (m,n) = 1.
Thus m = p1 · · · pr and n = q1 · · · qs for some primes pi and qj and pi 6= qj for all 1 ≤ i ≤
r, 1 ≤ j ≤ s. Then

m =
r∏
i=1

pi =
r∏
i=1

(1 + (pi − 1)) = 1 +
r∑
i=1

(pi − 1) +
∑

1≤i1<i2≤r

(pi1 − 1)(pi2 − 1)+

. . . products of 3, 4 and so on factors . . .

Since m is odd, so are the primes pi. Therefore pi−1 ≡ 0 (mod 2) and (pi1−1)(pi2−1) ≡ 0
(mod 4). Therefore all the terms in the above sum that are implicit are also divisible by 4.
Hence

m ≡ 1 +
r∑
i=1

(pi − 1) (mod 4),

which is to say

m− 1 ≡
r∑
i=1

(pi − 1) (mod 4).

Since m and the pi’s are odd, it follows that m−1 ≡ 0 (mod 2) and p1−1 ≡ 0 (mod 2), 1 ≤
i ≤ r. Thus we can divide each term above by 2 and still get integers. It follows that

m− 1

2
≡

r∑
i=1

pi − 1

2
(mod 2), (11.8)

so

(−1)
m−1

2 = (−1)
∑r
i=1

pi−1

2 =
r∏
i=1

(−1)
pi−1

2 =
r∏
i=1

(
−1

pi

)
=

(
−1

m

)
.

Similarly,

m2 =
r∏
i=1

p2i =
r∏
i=1

(
1 + (p2i − 1)

)
= 1 +

r∑
i=1

(p2i − 1) +
∑

1≤i1<i2≤r

(p2i1 − 1)(p2i2 − 1)+

. . . products of 3, 4 and so on factors . . .

We use again the fact that both m and the pi are odd. That means that m2 − 1 =
(m − 1)(m + 1) is the product of two consecutive even integers, so one of them is divisible
by 4. Thus m2 − 1 ≡ 0 (mod 8) and likewise p2i − 1 ≡ 0 (mod 8), 1 ≤ i ≤ r. It follows that
the product of two or more factors in the above summation is divisible by 64, hence

m2 − 1 ≡
r∑
i=1

(p2i − 1) (mod 64).
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Moreover each term is divisible by 8, so

m2 − 1

8
≡

r∑
i=1

p2i − 1

8
(mod 8),

as integers. It follows that

(−1)
m2−1

8 = (−1)
∑r
i=1

p2i−1

8 =
r∏
i=1

(−1)
p2i−1

8 =
r∏
i=1

(
2

pi

)
=

(
2

m

)
.

The last part of the theorem, in the case m,n > 1 and (m,n) = 1, is equivalent to(
m

n

)(
n

m

)
= (−1)

m−1
2

n−1
2 .

But (
m

n

)(
n

m

)
=
∏

1≤i≤r
1≤j≤s

(
pi
qj

)(
qj
pi

)
Thm 11.10

=
∏

1≤i≤r
1≤j≤s

(−1)
pi−1

2

qj−1

2 = (−1)t

where

t =
∑
1≤i≤r
1≤j≤s

pi − 1

2
· qj − 1

2
=
∑
1≤i≤r

pi − 1

2

∑
1≤j≤s

qj − 1

2
.

By (11.8), we have t ≡ m− 1

2
· n− 1

2
(mod 2) and the quadratic reciprocity law follows.

Jacobi symbols have many applications aside from their use in understanding the reci-
procity step formulated by Euler. The following result is an example of how they can be
used in the study of certain Diophantine equations.

Proposition 11.15. The Diophantine equation

y2 = x3 + k

has no solution if k = (4n− 1)3 − 4m2 and no prime p ≡ 3 (mod 4) divides m.

Proof. We argue by contradiction. Assume that (x, y) is a solution. Since k ≡ −1 (mod 4),
it follows that

y2 ≡ x3 − 1 (mod 4).

But y2 ≡ 0, 1 (mod 4), so x cannot be even and x 6≡ −1 (mod 4). Therefore x ≡ 1 (mod 4).
Let a = 4n− 1. Then a ≡ −1 (mod 4) and k = a3 − 4m2. We have

y2 = x3 + k = x3 + a3 − 4m2,

so
y2 + 4m2 = x3 + a3 = (x+ a)(x2 − ax+ a2). (11.9)
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Given that x ≡ 1 (mod 4) and a ≡ −1 (mod 4), we have that the last factor

x2 − ax+ a2 ≡ 3 (mod 4).

Thus x2 − ax + a2 is odd and it must have some prime divisor p ≡ 3 (mod 4). But (11.9)
implies that p | y2 + 4m2, i.e. −4m2 ≡ y2 (mod p) so(

−4m2

p

)
= 1.

On the other hand, since p ≡ 3 (mod 4), we have that p - m and therefore(
−4m2

p

)
=

(
−1

p

)
= −1 (contradiction!)

We now go back to our main goal of understanding the reciprocity step in Euler’s strategy.
For that we need the following property of the Jacobi symbol.

Proposition 11.16. If m,n are positive odd integers and is an integer with D ≡ 0, 1
(mod 4) such that m ≡ n (mod D), then(

D

m

)
=

(
D

n

)
.

Proof. First we treat the case when D ≡ 1 (mod 4).

If D > 0, then (
D

m

)
= (−1)

m−1
2

D−1
2

(
m

D

)
.

But D−1
2

is even, hence

(
D

m

)
=

(
m

D

)
. The argument holds for any positive odd integer

m, and it can therefore be applied just as well to n. The result follows immediately
since m ≡ n (mod D).

If D < 0, set d = −D. Then d > 0 and d ≡ 3 (mod 4), so d+1
2

is even. We have(
D

m

)
=

(
−d
m

)
=

(
−1

m

)(
d

m

)
= (−1)

m−1
2 (−1)

m−1
2

d−1
2

(
m

d

)
= (−1)

m−1
2

d+1
2

(
m

d

)
=

(
m

d

)
.

Since the same holds for n, the result follows from the fact that m ≡ n (mod d).

Now consider the other case, D ≡ 0 (mod 4). It follows that D = 2ab for some positive
odd integer b and a ≥ 2.
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If D > 0, then (
D

m

)
=

(
2

m

)a(
b

m

)
= (−1)

m2−1
8

a(−1)
m−1

2
b−1
2

(
m

b

)
.

Similarly, (
D

n

)
= (−1)

n2−1
8

a(−1)
n−1
2

b−1
2

(
n

b

)
.

The result would follow if we showed that

m2 − 1

8
a ≡ n2 − 1

8
a (mod 2) (11.10)

and
m− 1

2

b− 1

2
≡ n− 1

2

b− 1

2
(mod 2). (11.11)

We have
m− 1

2

b− 1

2
− n− 1

2

b− 1

2
=
m− n

2

b− 1

2

and this is even since 4 | m − n. Thus (11.11) is proved. For the other relation, we
have

m2 − 1

8
a− n2 − 1

8
a =

m2 − n2

8
a =

(m− n)(m+ n)

8
a.

Now 2 | m + n and 2a | m − n. Thus m2 − n2 ≡ 0 (mod 16) when a ≥ 3 and (11.10)
follows in this case. On the other hand, if a = 2, then m2−n2

8
a is again even and we are

done. (We used the fact that m2−n2

8
∈ Z.)

If D < 0, set d = −D. Then d > 0 and d ≡ 0 (mod 4). From above it follows that(
d

m

)
=

(
d

n

)
.

We also have (
D

m

)
=

(
−d
m

)
=

(
−1

m

)(
d

m

)
= (−1)

m−1
2

(
d

m

)
and, similarly, (

D

n

)
= (−1)

n−1
2

(
d

n

)
.

The result follows from the fact that

m− 1

2
≡ n− 1

2
(mod 2) ⇐⇒ 2 | m− n

2
⇐⇒ 4 | m− n⇐

{
m ≡ n (mod D)

D ≡ 0 (mod 4).
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Theorem 11.17. Let D ≡ 0, 1 (mod 4) be a nonzero integer. Then there exists a unique
group homomorphism χD : (Z/DZ)× → {±1} such that

χD([p]) =

(
D

p

)
(the Legendre symbol modulo p) for all odd primes p - D.

Furthermore,

χD([−1]) =

{
1 if D > 0;

−1 if D < 0.

Proof. First we show existence. Let

χ : (Z/DZ)× → {±1}, χ([a]) =

(
D

m

)
where m ≡ a (mod D) is an odd positive integer.

We need to show that this is a well-defined map, and for that we need to prove the following
two facts.

Claim 1 For any (a,D) = 1 there exists a positive odd integer m ≡ a (mod D).
Claim 2 If m,n are positive odd integers and m ≡ n (mod D), then(

D

m

)
=

(
D

n

)
.

The second claim is an immediate consequence of Proposition 11.16. The first one, is also
easy. There exists some integer k for which a + kD > 0. If D is even, then a has to be odd
and a+ kD is odd and positive. If D is odd, then either a+ kD or a+ kD+ |D| is both odd
and positive.
The map χ is clearly a group homomorphism since the Jacobi symbol is completely multi-
plicative. The condition on primes is just as clear.

Now we have to prove uniqueness. Assume that f : (Z/DZ)× → {±1} is a group

homomorphism with f([p]) =

(
D

p

)
for any odd prime p - D. Clearly f(m) = 1. Also, for

any odd integer m > 1, we have m = p1 · · · pr for some odd primes p1, . . . , pr. Then

f([m]) = f([p1]) · · · f([pr]) =

(
D

p1

)
· · ·
(
D

pr

)
=

(
D

m

)
= χ([m]).

Since we have shown that every class [a] ∈ (Z/DZ)× contains a positive odd integer m, it
follows that f([a]) = χ([a]) for all [a] ∈ (Z/DZ)× .
The proof for the expression of χD([−1]) is left as an exercise.

Corollary 11.18. Let n be a nonzero integer and let χ = χ−4n : (Z/4nZ)× → {±1} be
the group homomorphism defined in Theorem 11.17 when D = −4n. Let p be an odd prime,
p - n. The following are equivalent.
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(i) p | a2 + nb2 for some integers (a, b) = 1.

(ii)

(
−n
p

)
= 1.

(iii) [p] ∈ kerχ ⊂ (Z/4nZ)× .

Proof. The statements (i) and (ii) are equivalent by Proposition 11.2.

We want to show that (ii) ⇐⇒ (iii). Theorem 11.17 says that (iii) ⇐⇒
(
−4n

p

)
= 1.

Since (
−4n

p

)
=

(
2

p

)2(−n
p

)
=

(
−n
p

)
,

the proof is complete.

Note that this finishes the Reciprocity Step from Euler’s strategy because if ker(χ) =
{[α], [β], [γ], . . .}, Corollary 11.18 says that

p | a2 + nb2, (a, b) = 1 ⇐⇒ p ≡ α, β, γ, . . . (mod 4n).

This is precisely the kind of condition we were looking for.
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