HOMEWORK 7

DUE 1 MARCH 2014

Read the Example on pages 549-550 of Dummit and Foote about finite fields with p^{n} elements.

1. Let $\mathbb{F}_{q}(t)$ be the rational function field in t over a finite field \mathbb{F}_{q} of characteristic p. Let $K / \mathbb{F}_{q}(t)$ be a finite extension.
(a) Describe briefly why $K^{p^{n}}=\left\{x^{p^{n}} ; x \in K\right\}$ is a field for any $n \in \mathbb{Z}$.
(b) Show that $K^{1 / p}=K\left(\alpha^{1 / p}\right)$ for any $\alpha \in K \backslash K^{p}$. (Hint: first show that $\left[K: K^{p}\right]=p$.)
2. (Optional, but good for you!) Let $F=\mathbb{F}_{q}$ be a finite field with q elements of characteristic p.
(a) Let $f\left(X_{1}, \ldots, X_{n}\right)$ be a polynomial in $F\left[X_{1}, \ldots, X_{n}\right]$ of degree d and assume that $f(0, \ldots, 0)=0$. An element $a=\left(a_{1}, \ldots, a_{n}\right) \in F^{n}$ such that $f(a)=0$ is called a zero of f. If $n>d$, show that f has at least one other zero in F^{n}. [Hint: Assume the contrary, and compare the degrees of the reduced polynomial belonging to

$$
1-f(X)^{q-1}
$$

and $\left(1-X_{1}^{q-1}\right)\left(1-X_{2}^{q-1}\right) \ldots\left(1-X_{n}^{q-1}\right)$. (The theorem is due to Chevalley.)
(b) Refine the above results by proving that the number N of zeros of f in F^{n} is divisible by p arguing as follows.
(i) Let i be a positive integer. Show that

$$
\sum_{\alpha \in F} \alpha^{i}= \begin{cases}q-1=-1 & \text { if } q-1 \mid i \\ 0 & \text { if } q-1 \nmid i .\end{cases}
$$

0 otherwise.
(ii) Denote the preceding function of i by $\psi(i)$. Show that

$$
N \equiv \sum_{x \in F^{n}}\left(1-f(x)^{q-1}\right)
$$

(iii) Show that, for each n-tuple $\left(i_{1}, \ldots, i_{n}\right)$ of nonnegative integers,

$$
\sum_{x \in F^{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}=\psi\left(i_{1}\right) \ldots \psi\left(i_{n}\right) .
$$

(iv) Show that both terms in the sum for N above yield $0 \bmod p$. (The above argument is due to Warning.)
(c) Extend Chevalley's theorem to r polynomials f_{1}, \ldots, f_{r} of degrees d_{1}, \ldots, d_{r} respectively, in n variables. If they have no constant term and $n>\sum d_{i}$, show that they have a nontrivial common zero.
(d) Show that an arbitrary function $f: F^{n} \longrightarrow F$ can be represented by a polynomial. (As before, F is a finite field.)

From Dummit and Foote: section 13.1 problem 2; section 13.2 problems 5, 7, 9; section 13.4 problem 1.

