HOMEWORK 3

DUE 31 JANUARY 2014

1. Let G be a group. Denote $\mathbb{Z}[G]$ the free abelian group (or free \mathbb{Z}-module) on the set G. That is,
$\mathbb{Z}[G]=\left\{\sum_{\sigma \in G} a_{\sigma} \sigma ; a_{\sigma} \in \mathbb{Z} \forall \sigma \in G\right.$ and all but finitely many a_{σ} 's are equal to zero $\}$
with the natural addition.
(a) Show that $\mathbb{Z}[G]$ becomes a ring with the multiplication

$$
\left(\sum_{\sigma \in G} a_{\sigma} \sigma\right) \cdot\left(\sum_{\tau \in G} b_{\tau} \tau\right)=\sum_{\sigma \in G}\left(\sum_{\sigma^{\prime} \tau=\sigma} a_{\sigma^{\prime}} b_{\tau}\right) \sigma
$$

(Do show that the multiplication is well-defined.)
(b) What is the unit in this ring?
(c) Show that the set R of finitely supported functions $f: G \longrightarrow \mathbb{Z}$ becomes a ring under the usual function addition and multiplication given by convolution. That is, the elements of R are maps of sets $f: G \longrightarrow \mathbb{Z}$ with the property that $f(\sigma)=0$ for all but finitely many $\sigma \in G$; the addition is given by $(f+g)(\sigma)=f(\sigma)+g(\sigma)$ for all $\sigma \in G$; and the multiplication is given by

$$
(f * g)(\sigma)=\sum_{\tau \in G} f(\tau) g\left(\tau^{-1} \sigma\right)
$$

(d) Show that $\mathbb{Z}[G]$ is naturally isomorphic to R (as rings).
2. Let G be a group. A (left) G-module is an abelian group M on which there is a G action which satisfies for all $m, m^{\prime} \in M$ and $\sigma, \tau \in G$,

$$
\begin{aligned}
1_{G} m & =m \\
\sigma(\tau m) & =(\sigma \tau) m \\
\sigma\left(m+m^{\prime}\right) & =\sigma m+\sigma m^{\prime}
\end{aligned}
$$

That is, there is a group homomorphism $G \longrightarrow \operatorname{Aut}_{\mathbb{Z}}(M): \sigma \mapsto \sigma(\cdot)$. A morphism of G modules $f: M \longrightarrow N$ is a group homomorphism which also satisfies $f(\sigma m)=\sigma f(m)$, for $m \in M$ and $\sigma \in G$. For a G-module M, the subgroup of G-invariant elements of M is

$$
M^{G}:=\{m \in M ; \sigma m=m, \forall \sigma \in G\}
$$

Let F be the functor from the category of G-modules to the category of abelian groups, defined by $F(M)=M^{G}$. Show
(a) Show that the category of left G-modules is the same as the category of left modules over the ring $\mathbb{Z}[G]$. (Nothing fancy is warranted here; just describe the correspondence between the two categories.)
(b) Show that F is a left exact functor.
(c) Let t be a variable and let $G=\left\{t^{n} ; n \in \mathbb{Z}\right\}$ be the infinite cyclic group generated by t. Let $N=\mathbb{Z}[G]=\mathbb{Z}\left[t, t^{-1}\right]$, and let M be the sub- G-module of N,

$$
M=\left\{n \in N ; n=n^{\prime}(t-1) \text { for some } n^{\prime} \in N\right\}=\mathbb{Z}\left[t, t^{-1}\right](t-1)
$$

Show that N and M are G-modules under left-multiplication. Show that as abelian groups $N / M \cong \mathbb{Z}$ and that the action of G on \mathbb{Z}, induced by this isomorphism, is trivial (i.e., $\sigma a=a$ for all $\sigma \in G, a \in \mathbb{Z}$). Use the exact sequence of G-modules

$$
0 \longrightarrow M \longrightarrow N \longrightarrow \mathbb{Z} \longrightarrow 0
$$

to show that F is not exact.
3. Let R be a commutative ring and S a multiplicative subset of R. For any R-module M define $S^{-1} M$ is a manner similar to the one used to define $S^{-1} R$. Recall here that if R is not an integral domain, the equivalence relation that defines the localization is more complicated. Namely, $S^{-1} M$ is the set of equivalence classes of elements in $M \times S$ with respect to the equivalence relation

$$
(x, s) \sim\left(x^{\prime}, s^{\prime}\right) \Longleftrightarrow \exists s_{1} \in S \text { s.t. } s_{1}\left(s^{\prime} x-s x^{\prime}\right)=0
$$

(a) Show that $S^{-1} M$ is an $S^{-1} R$-module.
(b) Show that the localization functor $S^{-1}(\cdot): R-\bmod \longrightarrow\left(S^{-1} R\right)$-mod is an exact functor from the category of R-modules to the category of $S^{-1} R$-modules.
4. Let R be a commutative ring and \mathfrak{p} a prime ideal of R. If $S=R \backslash \mathfrak{p}$, then the localization $S^{-1} M$ is denoted by $M_{\mathfrak{p}}$.
(a) Show that the natural map

$$
M \longrightarrow \prod_{\mathfrak{m} \text { maximal ideal of } R} M_{\mathfrak{m}}
$$

is injective. (Hint: consider the annihilator ideal $\operatorname{Ann}_{R}(x)=\{r \in R ; r x=0\}$, but do show that it is an ideal.)
(b) Show that a sequence of R-modules

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

is exact if and only if the sequence

$$
0 \longrightarrow M_{\mathfrak{p}}^{\prime} \longrightarrow M_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}}^{\prime \prime} \longrightarrow 0
$$

is exact for all prime ideals \mathfrak{p} of R.
5. Let $R=\mathbb{Z}[\sqrt{-6}]=\{a+b \sqrt{-6} ; a, b, \in \mathbb{Z}\}$. Let $\mathfrak{a}=(2, \sqrt{-6})$ be the ideal of R generated by 2 and $\sqrt{-6}$.
(a) Show that \mathfrak{a} is not a free R-module.
(b) Show that \mathfrak{a} is a projective R-module.

