HOMEWORK 3

DUE 31 JANUARY 2014

1. Let G be a group. Denote $\mathbb{Z}[G]$ the free abelian group (or free \mathbb{Z} -module) on the set G. That is,

$$\mathbb{Z}[G] = \left\{ \sum_{\sigma \in G} a_{\sigma}\sigma ; a_{\sigma} \in \mathbb{Z} \,\forall \sigma \in G \text{ and all but finitely many } a_{\sigma}\text{'s are equal to zero } \right\}$$

with the natural addition.

(a) Show that $\mathbb{Z}[G]$ becomes a ring with the multiplication

$$\left(\sum_{\sigma\in G} a_{\sigma}\sigma\right)\cdot\left(\sum_{\tau\in G} b_{\tau}\tau\right) = \sum_{\sigma\in G} \left(\sum_{\sigma'\tau=\sigma} a_{\sigma'}b_{\tau}\right)\sigma.$$

(Do show that the multiplication is well-defined.)

- (b) What is the unit in this ring?
- (c) Show that the set R of finitely supported functions $f: G \longrightarrow \mathbb{Z}$ becomes a ring under the usual function addition and multiplication given by convolution. That is, the elements of R are maps of sets $f: G \longrightarrow \mathbb{Z}$ with the property that $f(\sigma) = 0$ for all but finitely many $\sigma \in G$; the addition is given by $(f + g)(\sigma) = f(\sigma) + g(\sigma)$ for all $\sigma \in G$; and the multiplication is given by

$$(f*g)(\sigma) = \sum_{\tau \in G} f(\tau)g(\tau^{-1}\sigma).$$

- (d) Show that $\mathbb{Z}[G]$ is naturally isomorphic to R (as rings).
- **2.** Let G be a group. A (left) G-module is an abelian group M on which there is a G action which satisfies for all $m, m' \in M$ and $\sigma, \tau \in G$,

$$\begin{array}{rcl} 1_Gm &=& m,\\ \sigma(\tau m) &=& (\sigma\tau)m,\\ \sigma(m+m') &=& \sigma m+\sigma m'.\\ &1 \end{array}$$

That is, there is a group homomorphism $G \longrightarrow \operatorname{Aut}_{\mathbb{Z}}(M) : \sigma \mapsto \sigma(\cdot)$. A morphism of G-modules $f : M \longrightarrow N$ is a group homomorphism which also satisfies $f(\sigma m) = \sigma f(m)$, for $m \in M$ and $\sigma \in G$. For a G-module M, the subgroup of G-invariant elements of M is

$$M^G := \{ m \in M; \sigma m = m, \forall \sigma \in G \}.$$

Let F be the functor from the category of G-modules to the category of abelian groups, defined by $F(M) = M^G$. Show

- (a) Show that the category of left G-modules is the same as the category of left modules over the ring $\mathbb{Z}[G]$. (Nothing fancy is warranted here; just describe the correspondence between the two categories.)
- (b) Show that F is a left exact functor.
- (c) Let t be a variable and let $G = \{t^n; n \in \mathbb{Z}\}$ be the infinite cyclic group generated by t. Let $N = \mathbb{Z}[G] = \mathbb{Z}[t, t^{-1}]$, and let M be the sub-G-module of N,

$$M = \{n \in N; n = n'(t-1) \text{ for some } n' \in N\} = \mathbb{Z}[t, t^{-1}](t-1).$$

Show that N and M are G-modules under left-multiplication. Show that as abelian groups $N/M \cong \mathbb{Z}$ and that the action of G on Z, induced by this isomorphism, is trivial (i.e., $\sigma a = a$ for all $\sigma \in G, a \in \mathbb{Z}$). Use the exact sequence of G-modules

$$0 \longrightarrow M \longrightarrow N \longrightarrow \mathbb{Z} \longrightarrow 0$$

to show that F is not exact.

3. Let R be a commutative ring and S a multiplicative subset of R. For any R-module M define $S^{-1}M$ is a manner similar to the one used to define $S^{-1}R$. Recall here that if R is not an integral domain, the equivalence relation that defines the localization is more complicated. Namely, $S^{-1}M$ is the set of equivalence classes of elements in $M \times S$ with respect to the equivalence relation

$$(x,s) \sim (x',s') \iff \exists s_1 \in S \text{ s.t. } s_1(s'x - sx') = 0.$$

- (a) Show that $S^{-1}M$ is an $S^{-1}R$ -module.
- (b) Show that the localization functor $S^{-1}(\cdot) : R \text{-mod} \longrightarrow (S^{-1}R) \text{-mod}$ is an exact functor from the category of R-modules to the category of $S^{-1}R$ -modules.
- 4. Let R be a commutative ring and \mathfrak{p} a prime ideal of R. If $S = R \setminus \mathfrak{p}$, then the localization $S^{-1}M$ is denoted by $M_{\mathfrak{p}}$.

$$M \longrightarrow \prod_{\mathfrak{m} \text{ maximal ideal of } R} M_{\mathfrak{m}}$$

is injective. (Hint: consider the annihilator ideal $\operatorname{Ann}_R(x) = \{r \in R; rx = 0\}$, but do show that it is an ideal.)

(b) Show that a sequence of R-modules

 $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$

is exact if and only if the sequence

$$0 \longrightarrow M'_{\mathfrak{p}} \longrightarrow M_{\mathfrak{p}} \longrightarrow M''_{\mathfrak{p}} \longrightarrow 0$$

is exact for all prime ideals \mathfrak{p} of R.

- 5. Let $R = \mathbb{Z}[\sqrt{-6}] = \{a + b\sqrt{-6}; a, b, \in \mathbb{Z}\}$. Let $\mathfrak{a} = (2, \sqrt{-6})$ be the ideal of R generated by 2 and $\sqrt{-6}$.
 - (a) Show that \mathfrak{a} is not a free *R*-module.
 - (b) Show that \mathfrak{a} is a projective *R*-module.