HOMEWORK 9

DUE FRIDAY 15 MARCH 2013

Recall that if K is a number field (i.e. finite degree extension of \mathbb{Q}), then its ring of integers \mathcal{O}_K is defined to be the integral closure of \mathbb{Z} in K.

- **1.** Find the ring of integers in $\mathbb{Q}(\sqrt[3]{2})$. Justify your answer.
- **2.** Let $\sigma, \bar{\sigma} : \mathbb{Q}(\sqrt{-1}) \hookrightarrow \mathbb{C}$ be the two embeddings of $\mathbb{Q}(\sqrt{-1})$ into \mathbb{C} . Show that $||x||_1 = |\sigma(x)|^2$ and $||x||_2 = |\bar{\sigma}(x)|^2$ both define the same archimedean place of $\mathbb{Q}(\sqrt{-1})$.
- **3.** Let p be a prime number. Find all the extensions of the p-adic valuation v_p on \mathbb{Q} to $\mathbb{Q}(\sqrt{-1})$. *Hint: It will depend on* $p \pmod{4}$.
- **4.** Let ζ_5 denote a primitive fifth root of unity in \mathbb{C} . Set $K = \mathbb{Q}(\zeta_5)$.
 - (a) Find all the embeddings of K into \mathbb{C} .
 - (b) For each embedding $\sigma : K \hookrightarrow \mathbb{C}$ define $||x||_{\sigma} = |\sigma(x)|^2$. Show that this defines an archimedean generalized absolute value on K. How many distinct archimedean places of K do they represent?
- 5. Same problem for $K = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$ where ζ_7 is a primitive seventh root of unity.
- 6. Let $K = \mathbb{Q}(\sqrt{-5})$. For any $\alpha_1, \ldots, \alpha_m \in K$, denote by

$$[\alpha_1, \dots, \alpha_m] = \left\{ \sum_{i=1}^m a_i \alpha_i; a_1, \dots, a_m \in \mathbb{Z} \right\}$$

the Z-submodule of K generated by $\alpha_1, \ldots, \alpha_m$. Then $\mathcal{O}_K = [1, \sqrt{-5}]$. Which, if any, of the following three Z-modules are ideals?

- $[19+7\sqrt{-5}, 43+16\sqrt{-5}]$
- $[15 + 14\sqrt{-5}, 34 + 32\sqrt{-5}]$
- $[-31+11\sqrt{-5},-71+25\sqrt{-5}]$
- 7. Let L/K be a degree *n* extension of number fields. Assume the ring of integers \mathcal{O}_K is a principal ideal domain. Show that every fractional ideal of \mathcal{O}_L is a free \mathcal{O}_K -module of rank *n*.

- 8. Let p > 2 be an odd prime and n > 1 an integer coprime to p. Let α be a root of the polynomial $X^n p \in \mathbb{Q}_p[X]$. Let $K = \mathbb{Q}_p(\alpha)$. We extend the *p*-adic valuation v_p to K as follows.
 - (a) Find an extension of $|\cdot|_p$ to K. Its equivalence class is the unique place of K above $|\cdot|_p$.
 - (b) Find the discrete valuation w on K associated to this place and an uniformizer $\pi \in K$.
 - (c) Find the group homomorphism $f : \mathbb{Z} = \operatorname{Im}(v_p) \to \mathbb{Z} = \operatorname{Im}(w)$ induced by the natural embedding of \mathbb{Q}_p in K via the commutative diagram

(d) Find ker(f) and coker(f). (This is the sense is which we think of the quotient group Im(w)/Im(v_p).)
If you're curious, try to see what happens when you take n = p^k. But this is not a

If you're curious, try to see what happens when you take $n = p^n$. But this is not a required part of this assignment,

9. Prove the Weak approximation theorem:

Let $|\cdot|_n$ with $1 \leq n \leq N$ be nontrivial non-equivalent generalized absolute values on a field F. For each n denote by F_n the topological space induced by $|\cdot|_n$ on F. Then the image Δ of F in the product topological space

$$X = \prod_{n=1}^{N} F_n$$

is dense in X. In other words, given $\alpha_n \in F, 1 \leq n \leq N$ and $\varepsilon > 0$ there exist $a \in F$ such that

 $|a - \alpha_n|_n < \varepsilon$ for all $1 \le n \le N$.

Hint: see Section 6, Chapter II in Cassels and Fröhlich.