HOMEWORK 9

DUE FRIDAY 15 MARCH 2013

Recall that if K is a number field (i.e. finite degree extension of \mathbb{Q}), then its ring of integers \mathcal{O}_{K} is defined to be the integral closure of \mathbb{Z} in K.

1. Find the ring of integers in $\mathbb{Q}(\sqrt[3]{2})$. Justify your answer.
2. Let $\sigma, \bar{\sigma}: \mathbb{Q}(\sqrt{-1}) \hookrightarrow \mathbb{C}$ be the two embeddings of $\mathbb{Q}(\sqrt{-1})$ into \mathbb{C}. Show that $\|x\|_{1}=|\sigma(x)|^{2}$ and $\|x\|_{2}=|\bar{\sigma}(x)|^{2}$ both define the same archimedean place of $\mathbb{Q}(\sqrt{-1})$.
3. Let p be a prime number. Find all the extensions of the p-adic valuation v_{p} on \mathbb{Q} to $\mathbb{Q}(\sqrt{-1})$. Hint: It will depend on $p(\bmod 4)$.
4. Let ζ_{5} denote a primitive fifth root of unity in \mathbb{C}. Set $K=\mathbb{Q}\left(\zeta_{5}\right)$.
(a) Find all the embeddings of K into \mathbb{C}.
(b) For each embedding $\sigma: K \hookrightarrow \mathbb{C}$ define $\|x\|_{\sigma}=|\sigma(x)|^{2}$. Show that this defines an archimedean generalized absolute value on K. How many distinct archimedean places of K do they represent?
5. Same problem for $K=\mathbb{Q}\left(\zeta_{7}+\zeta_{7}^{-1}\right)$ where ζ_{7} is a primitive seventh root of unity.
6. Let $K=\mathbb{Q}(\sqrt{-5})$. For any $\alpha_{1}, \ldots, \alpha_{m} \in K$, denote by

$$
\left[\alpha_{1}, \ldots, \alpha_{m}\right]=\left\{\sum_{i=1}^{m} a_{i} \alpha_{i} ; a_{1}, \ldots, a_{m} \in \mathbb{Z}\right\}
$$

the \mathbb{Z}-submodule of K generated by $\alpha_{1}, \ldots, \alpha_{m}$. Then $\mathcal{O}_{K}=[1, \sqrt{-5}]$. Which, if any, of the following three \mathbb{Z}-modules are ideals?

- $[19+7 \sqrt{-5}, 43+16 \sqrt{-5}]$
- $[15+14 \sqrt{-5}, 34+32 \sqrt{-5}]$
- $[-31+11 \sqrt{-5},-71+25 \sqrt{-5}]$

7. Let L / K be a degree n extension of number fields. Assume the ring of integers \mathcal{O}_{K} is a principal ideal domain. Show that every fractional ideal of \mathcal{O}_{L} is a free \mathcal{O}_{K}-module of rank n.
8. Let $p>2$ be an odd prime and $n>1$ an integer coprime to p. Let α be a root of the polynomial $X^{n}-p \in \mathbb{Q}_{p}[X]$. Let $K=\mathbb{Q}_{p}(\alpha)$. We extend the p-adic valuation v_{p} to K as follows.
(a) Find an extension of $|\cdot|_{p}$ to K. Its equivalence class is the unique place of K above $|\cdot|_{p}$.
(b) Find the discrete valuation w on K associated to this place and an uniformizer $\pi \in K$.
(c) Find the group homomorphism $f: \mathbb{Z}=\operatorname{Im}\left(v_{p}\right) \rightarrow \mathbb{Z}=\operatorname{Im}(w)$ induced by the natural embedding of \mathbb{Q}_{p} in K via the commutative diagram

$$
\begin{array}{rll}
\mathbb{Q}_{p} & \hookrightarrow & K \\
v_{p} \downarrow & & \downarrow w \\
\mathbb{Z} & \xrightarrow{f} & \mathbb{Z}
\end{array}
$$

(d) Find $\operatorname{ker}(f)$ and $\operatorname{coker}(f)$. (This is the sense is which we think of the quotient group $\operatorname{Im}(w) / \operatorname{Im}\left(v_{p}\right)$.)
If you're curious, try to see what happens when you take $n=p^{k}$. But this is not a required part of this assignment,
9. Prove the Weak approximation theorem:

Let $|\cdot|_{n}$ with $1 \leq n \leq N$ be nontrivial non-equivalent generalized absolute values on a field F. For each n denote by F_{n} the topological space induced by $|\cdot|_{n}$ on F. Then the image Δ of F in the product topological space

$$
X=\prod_{n=1}^{N} F_{n}
$$

is dense in X. In other words, given $\alpha_{n} \in F, 1 \leq n \leq N$ and $\varepsilon>0$ there exist $a \in F$ such that

$$
\left|a-\alpha_{n}\right|_{n}<\varepsilon \text { for all } 1 \leq n \leq N .
$$

Hint: see Section 6, Chapter II in Cassels and Fröhlich.

