HOMEWORK 6

DUE 20 FEBRUARY 2013

- **1.** Show that a closed subset of a complete metric space is complete.
- **2.** Let *R* be a commutative ring and \mathfrak{p} a prime ideal of *R*. Assume that *I*, *J* are ideals of *R* and $IJ \subset \mathfrak{p}$. Show that $I \subset \mathfrak{p}$ or $J \subset \mathfrak{p}$.
- **3.** Show that the ring \mathbb{Z} is integrally closed.
- 4. (a) Let $a + b\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$. Find its minimal polynomial over \mathbb{Q} .
 - (b) Show that if an element $x \in \mathbb{Q}(\sqrt{-1})$ is integral over \mathbb{Z} then its minimal polynomial has coefficients in \mathbb{Z} .
 - (c) Show that $\mathbb{Z}[\sqrt{-1}]$ is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{-1})$.
- 5. (a) Let $x + y\sqrt{-3} \in \mathbb{Q}(\sqrt{-3})$. Find its minimal polynomial over \mathbb{Q} .
 - (b) Show that if an element $x \in \mathbb{Q}(\sqrt{-3})$ is integral over \mathbb{Z} then its minimal polynomial has coefficients in $\mathbb{Z}_{\cdot_{n}}$
 - (c) Show that $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{-3})$.
- **6.** Let $A \subset B$ be commutative rings such that B is a finitely generated A-module. Show that any finitely generated B-module M is finitely generated as an A-module.
- 7. Let K be a number field and \mathcal{O}_K its ring of integers. Show that K is the fraction field of the integral domain \mathcal{O}_K .
- 8. Let A ⊂ B ⊂ C be commutative rings and denote by A the integral closure of A in B.
 (a) Show that A is a ring.
 - (b) Show that the integral closure of A in C is the same as the integral closure of \overline{A} in C.
 - (c) If B is integral over A and C is integral over B, show that C is integral over A.
- **9.** Let A be an integral domain and K its quotient field. Let L/K be a finite field extension and B the integral closure of A in L.
 - (a) Prove that B is a ring.
 - (b) Show that L is the quotient field of B.

Hint: Lemma 5.21 from the notes will help with many of these exercises. So might Google and Atiyah & MacDonald.