HOMEWORK 4

DUE 6 FEBRUARY 2013

Inverse limits

1. Let R be a commutative ring. An inverse (projective) system of R-modules is a sequence $M_{n}, n \geq 1$ of R-modules together with R-module homomorphisms $f_{n}: M_{n+1} \rightarrow M_{n}$. Define

$$
M=\left\{\left(x_{n}\right)_{n} \in \prod_{n=1}^{\infty} M_{n} ; f_{n}\left(x_{n+1}\right)=x_{n}\right\}
$$

(a) Show that M is an R-module and that the map $p_{n}: M \rightarrow M_{n}, p_{n}\left(\left(x_{j}\right)_{j}\right)=x_{n}$ is a homomorphism of R-modules for all $n \geq 1$. Show also that $f_{n} \circ p_{n+1}=p_{n}$ for all $n \geq 1$.
(b) Show that M has the following universality property. If N is an R-module and g_{n} : $N \rightarrow M_{n}, n \geq 1$ are R-linear maps such that $f_{n} \circ g_{n+1}=g_{n}$ for all $n \geq 1$, then there exists a unique R-linear map $g: N \rightarrow M$ such that $g_{n}=p_{n} \circ g$ for all $n \geq 1$.
(c) Show that M is the unique (up to isomorphism) R-module that satisfies (b).

An R-module M that satisfies the universality property (b) is called the inverse (projective) limit of the inverse system $\left(M_{n}, f_{n}\right)_{n}$ and we write

$$
M=\lim _{\longleftarrow} M_{n}
$$

2. (a) Show that $\mathbb{Z} / p^{n} \mathbb{Z}$ form an inverse system of abelian groups with the maps $f_{n}: \mathbb{Z} / p^{n+1} \mathbb{Z} \rightarrow$ $\mathbb{Z} / p^{n} \mathbb{Z}, x+p^{n+1} \mathbb{Z} \mapsto x+p^{n} \mathbb{Z}$.
(b) Show that $\mathbb{Z}_{p} \simeq \lim _{\leftarrow} \mathbb{Z} / p^{n} \mathbb{Z}$ with the natural homomorphisms given by $\varepsilon_{n}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$, $\varepsilon_{n}(x)=x\left(\bmod \overleftarrow{p^{n}}\right)$.
3. Recall that $U_{n}=1+p^{n} \mathbb{Z}_{p} \subset \mathbb{Z}_{p}^{\times}$for all $n \geq 1$.
(a) Show that $A_{n}=U_{1} / U_{n}$ form an inverse system of abelian groups with $g_{n}: A_{n+1} \rightarrow A_{n}$, $g_{n}\left(x U_{n+1}\right)=x U_{n}$.
(b) Show that $U_{1} \simeq \lim _{\leftarrow} U_{1} / U_{n}$ with the natural projections $p_{n}: U_{1} \rightarrow U_{1} / U_{n}$.
4. Assume $n \geq 1$ and $p \neq 2$ or $n \geq 2$ and $p=2$. Let $x \in U_{n} \backslash U_{n+1}$. Then $x^{p} \in U_{n+1} \backslash U_{n+2}$.
5. Assume $p \neq 2$.
(a) Choose $\alpha \in U_{1} \backslash U_{2}$. Show that U_{1} / U_{n} is a cyclic group of order p^{n-1} generated by $\alpha_{n}=p_{n}(\alpha)$.
(b) Show that $\theta_{n}: \mathbb{Z} / p^{n-1} \mathbb{Z} \rightarrow U_{1} / U_{n}, \theta_{n}(\bar{x})=\alpha_{n}^{x}$ is an isomorphism for all $n \geq 2$.
(c) Show that $g_{n} \circ \theta_{n+1}=\theta_{n} \circ f_{n-1}$.
(d) Show that $\left(\theta_{n}\right)_{n}$ induce an isomorphism $\theta: \mathbb{Z}_{p} \rightarrow U_{1}$.
(e) Compute $\theta\left(\sum_{r=0}^{\infty} b_{r} p^{r}\right)$.
6. Assume $p=2$.
(a) Show that $1+2^{2} \mathbb{Z}_{2} \simeq \mathbb{Z}_{2}$.
(b) Show that $1+2 \mathbb{Z}_{2}=\{ \pm 1\} \times\left(1+2^{2} \mathbb{Z}_{2}\right)$.
