HOMEWORK 3

DUE 30 JANUARY 2013

Fix a prime p. The first three exercises below concern the Teichmüller representatives of p-adic numbers.

1. Prove the \mathbb{Q}_{p} always contains p solutions a_{0}, \ldots, a_{p-1} to the equation

$$
x^{p}-x=0
$$

with $a_{j} \equiv j(\bmod p)$. These p numbers are called the Teichmüller representatives of the numbers $\{0,1, \ldots, p-1\}$ and can be used as a set of p-adic digits instead of the choice $0,1, \ldots, p-1$ we made in class. That is, every p-adic number $x \in \mathbb{Q}_{p}$ has a unique Teichmüller representation

$$
x=\sum_{r \geq-m} b_{r} p^{r} \text { with } b_{r} \in\left\{a_{0}, \ldots, a_{p-1}\right\} .
$$

2. Let $\alpha \in \mathbb{Z}_{p}$.
(a) Prove that

$$
\alpha^{p^{n}} \equiv \alpha^{p^{n-1}} \quad\left(\bmod p^{n}\right) \text { for } n \geq 1
$$

(b) Prove that the sequence $\left(\alpha^{p^{n}}\right)_{n \geq 1}$ is convergent in \mathbb{Q}_{p} and that its limit is the Teichmüller representative congruent to $\alpha(\bmod p)$.
3. Let $\mathrm{pr}: \mathbb{Z}_{p} \rightarrow \mathbb{F}_{p}$ be the natural projection, i.e. $\operatorname{pr}(a)=a(\bmod p)$. With the notation from the Problem 1, show that the map $\mathbb{F}_{p} \rightarrow \mathbb{Z}_{p}, j \mapsto a_{j}$ is the unique multiplicative map $f: \mathbb{F}_{p} \rightarrow \mathbb{Z}_{p}$ that has the property that $f \circ \mathrm{pr}=\operatorname{Id}_{\mathbb{F}_{p}}$.
4. (Eisenstein criterion) Let $F(X)=c_{0}+c_{1} X+\cdots+c_{n} X^{n} \in \mathbb{Z}_{p}[X]$ and assume that

$$
c_{j} \equiv 0(\bmod p), 0 \leq j \leq n-1, c_{n} \not \equiv 0(\bmod p), \text { and } c_{0} \not \equiv 0\left(\bmod p^{2}\right) .
$$

Prove that $F(X)$ is irreducible in $\mathbb{Q}_{p}[X]$.
5. Show that for every positive integer n

$$
v_{p}(n!)=\sum_{j=1}^{\infty}\left\lfloor\frac{n}{p^{j}}\right\rfloor<\frac{n}{p-1} .
$$

In particular,

$$
|n!|_{p}>p^{-\frac{n}{p-1}} .
$$

6. Show that every p-adic number that is sufficiently close to 1 is a p th power. That is, find an absolute constant $m \in \mathbb{Z}_{>0}$ (that does not depend on p) such that

$$
x \in \mathbb{Q}_{p},|x-1|_{p}<p^{-m} \Longrightarrow \exists y \in \mathbb{Q}_{p} \text { s.t. } x=y^{p}
$$

Note that your constant must work for all primes, including $p=2$. What is the optimal such m? Hint: Use the generalized binomial expansion.
7. A fundamental system of neighborhoods (neighborhood basis) of a point x in a topological space X is a family \mathcal{B} of neighborhoods of x such that for every neighborhood $U \subseteq X$ of x there exists $V \in \mathcal{B}$ such that $V \subseteq U$. Note that if one wants to prove continuity at a point, it is enough to do so for a neighborhood basis (assuming one can find a basis, of course).

Set

$$
B=\bigcap_{m \geq 1, p \nmid m}\left\{x^{m} ; x \in \mathbb{Q}_{p}^{\times}\right\}
$$

the set of elements of \mathbb{Q}_{p}^{\times}that are m th powers for every m coprime to p. Prove that the sets

$$
A_{n}=\left\{x^{p^{n}} ; x \in \mathbb{Q}_{p}^{\times}\right\} \cap B, n \geq 0
$$

form a neighborhood basis of 1 in \mathbb{Q}_{p}. Prove that $a-1+A_{n}$ form a neighborhood basis of $a \in \mathbb{Q}_{p}$. Hint: the A_{n} 's are defined via algebraic means in light of the next problem, but it might help to consider the sets $U_{n}=1+p^{n} \mathbb{Z}_{p}$, especially U_{1}.
8. Prove that \mathbb{Q}_{p} has no nontrivial field automorphisms. Note that we are not assuming that the automorphisms are continuous. Hint: you can use the previous problem to show that a field automorphism of \mathbb{Q}_{p} is forced to be continuous.

