HOMEWORK 2

DUE FRIDAY 25 JANUARY 2013

- 1. Assume F is a field and $|\cdot|$ is a generalized absolute value on F. Prove that F can be embedded in a complete field \hat{F} with a generalized absolute value $|\cdot|'$ extending $|\cdot|$ in such a way that \hat{F} is the closure of F with respect to $|\cdot|'$. Further, \hat{F} is unique up to isomorphism. (Hint: use the fact that any generalized absolute value is equivalent to an absolute value.)
- **2.** Show that for $x \in \mathbb{Q}^{\times}$

$$\prod_{p \text{ prime or } p=\infty} |x|_p = 1.$$

- **3.** Prove that if $x \in \mathbb{Q}$ and $|x|_p \leq 1$ for every prime p, then x is an integer.
- 4. Let p be a prime. Prove that any sequence of integers has a subsequence which is Cauchy with respect to $|\cdot|_p$.
- **5.** Assume $a \in \mathbb{Q}_p$ has p-adic expansion $\sum_{n \ge -m} a_n p^n$. Find the p-adic expansion of -a.
- 6. Find the *p*-adic expansion of
 - (a) $(3+2\times 7+0\times 7^2+1\times 7^3+...)(2+6\times 7+0\times 7^2+1\times 7^3+...)$ in \mathbb{Q}_7 to four digits;
 - (b) $\frac{1}{3+1\times 5+2\times 5^2+2\times 5^3+\ldots}$ in \mathbb{Q}_5 to four digits;
 - (c) $9 \times 11^2 (2 \times 11^{-3} + 0 \times 11^{-2} + 3 + 7 \times 11^4 + ...)$ in \mathbb{Q}_{11} to four digits;
 - (d) 2/3 in \mathbb{Q}_2 ;
 - (e) -1/6 in \mathbb{Q}_7 ;
 - (f) -9/16 in \mathbb{Q}_5 .
- 7. Prove that the *p*-adic expansion of some $a \in \mathbb{Q}_p^{\times}$ terminates (i.e. there exists N such that $a_i = 0$ for all $i \ge N$) if and only if a is a positive rational number whose denominator is a power of p.
- 8. Prove that the *p*-adic expansion of some $a \in \mathbb{Q}_p^{\times}$ has repeating digits from some point on (i.e. there exists N and r such that $a_{i+r} = a_i$ for all $i \ge N$) if and only if $a \in \mathbb{Q}^{\times}$.

9. Prove that the infinite sum

$$1+p+p^2+\ldots$$

converges to $\frac{1}{1-p}$ in \mathbb{Q}_p . What about

$$\sum_{n \ge 0} (-1)^n p^n$$

and

$$1 + (p-1)p + p^{2} + (p-1)p^{3} + p^{4} + (p-1)p^{5} + \dots?$$