HOMEWORK 1

DUE 16 JANUARY 2013

Fix a prime p. For any nonzero integer n set $v_p(n)$ to be the highest power of p that divides n. That is $v_p(n) = a$ such that $p^a \mid n$, but $p^{a+1} \nmid n$. We will also make the convention that $v_p(0) = \infty$.

1. Show that

$$v_p\left(\frac{m}{n}\right) = v_p(m) - v_p(n)$$

only depends on the fraction $\frac{m}{n}$ and not on the particular m and n. This means that v_p is a well-defined map $v_p : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$.

- **2.** Show that for any $x, y \in \mathbb{Q}$
 - (a) $v_p(xy) = v_p(x) + v_p(y)$
 - (b) $v_p(x) \in \mathbb{Z}$ for any nonzero rational x;
 - (c) $\dot{v_p}(x+y) = \min\{v_p(x), v_p(y)\}$ if $v_p(x) \neq v_p(y)$
 - (d) $v_p(x+y) \ge \min\{v_p(x), v_p(y)\}$
- **3.** Show that $v_p : \mathbb{Q}^{\times} \to \mathbb{Z}$ is a surjective group homomorphism.

Define the *p*-adic absolute value on \mathbb{Q} by

$$|x|_{p} = \begin{cases} \frac{1}{p^{v_{p}(x)}} & \text{if } x \neq 0\\\\ 0 & \text{if } x = 0. \end{cases}$$

- **4.** Show that $|\cdot|_p$ is an absolute value on the field of rational numbers \mathbb{Q} .
- 5. Show that for any $x, y \in \mathbb{Q}$ (a) $|x+y|_p \le \max\{|x|_p, |y|_p\}$ (b) $|x+y|_p = \max\{|x|_p, |y|_p\}$ if $|x|_p \ne |y|_p$
- **6.** Show that if $q \neq p$ are two different primes, then $|\cdot|_p \not\sim |\cdot|_q$ on \mathbb{Q} .
- 7. Show that, if a > 0, then $|\cdot|_{\infty}^{a}$ is an absolute value if and only if $a \le 1$. Here $|\cdot|_{\infty}$ denotes the usual absolute value.
- 8. Show that if $|\cdot|$ is a generalized absolute value on a field F, then addition, multiplication and taking inverses are continuous functions in the induced topology.
- **9.** Compute the *p*-adic distance $|a b|_p$ for
 - (a) a = 7, b = 4, p = 3;
 - (b) a = 7, b = -20, p = 3;
 - (c) a = 1/9, b = 1/16, p = 5;
 - (d) a = 9!, b = 0, p = 3.