HOMEWORK 1

DUE 16 JANUARY 2013

Fix a prime p. For any nonzero integer n set $v_{p}(n)$ to be the highest power of p that divides n. That is $v_{p}(n)=a$ such that $p^{a} \mid n$, but $p^{a+1} \nmid n$. We will also make the convention that $v_{p}(0)=\infty$.

1. Show that

$$
v_{p}\left(\frac{m}{n}\right)=v_{p}(m)-v_{p}(n)
$$

only depends on the fraction $\frac{m}{n}$ and not on the particular m and n. This means that v_{p} is a well-defined map $v_{p}: \mathbb{Q} \rightarrow \mathbb{Z} \cup\{\infty\}$.
2. Show that for any $x, y \in \mathbb{Q}$
(a) $v_{p}(x y)=v_{p}(x)+v_{p}(y)$
(b) $v_{p}(x) \in \mathbb{Z}$ for any nonzero rational x;
(c) $v_{p}(x+y)=\min \left\{v_{p}(x), v_{p}(y)\right\}$ if $v_{p}(x) \neq v_{p}(y)$
(d) $v_{p}(x+y) \geq \min \left\{v_{p}(x), v_{p}(y)\right\}$
3. Show that $v_{p}: \mathbb{Q}^{\times} \rightarrow \mathbb{Z}$ is a surjective group homomorphism.

Define the p-adic absolute value on \mathbb{Q} by

$$
|x|_{p}= \begin{cases}\frac{1}{p^{v_{p}(x)}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

4. Show that $|\cdot|_{p}$ is an absolute value on the field of rational numbers \mathbb{Q}.
5. Show that for any $x, y \in \mathbb{Q}$
(a) $|x+y|_{p} \leq \max \left\{|x|_{p},|y|_{p}\right\}$
(b) $|x+y|_{p}=\max \left\{|x|_{p},|y|_{p}\right\}$ if $|x|_{p} \neq|y|_{p}$
6. Show that if $q \neq p$ are two different primes, then $|\cdot|_{p} \nsim|\cdot|_{q}$ on \mathbb{Q}.
7. Show that, if $a>0$, then $|\cdot|_{\infty}^{a}$ is an absolute value if and only if $a \leq 1$. Here $|\cdot|_{\infty}$ denotes the usual absolute value.
8. Show that if $|\cdot|$ is a generalized absolute value on a field F, then addition, multiplication and taking inverses are continuous functions in the induced topology.
9. Compute the p-adic distance $|a-b|_{p}$ for
(a) $a=7, b=4, p=3$;
(b) $a=7, b=-20, p=3$;
(c) $a=1 / 9, b=1 / 16, p=5$;
(d) $a=9!, b=0, p=3$.
