Jacobi symbols

Definition. Let m be an odd positive integer.
o [fm =1, the Jacobi symbol (I) : Z — C 1is the constant function 1.

e [f m > 1, it has a decomposition as a product of (not necessarily distinct) primes

m =p1---pr. The Jacobi symbol (—) : 7 — C 1is given by
m

(-6)-¢

m P1 Dr '

Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and
nonresidues. That is, we could have (%) = 1 just because two of the factors happen to be

—1. For instance,
3)- ()=

but 2 is not a square modulo 15. The following properties of the Jacobi symbol are direct
consequences of its definition.

Proposition 1. Let m,n be positive odd integers and a,b € Z. Then

o)

(ii) (%) =0 < (a,m)>1;

I;



(i) (a,m) =1 —s (@) (%)

Proof. Exercise. m

Theorem 2. Let m,n be positive odd integers. Then

i) (5) =0
i) (2) = 0

(ii) (%) = (—1)" T (%) .

Proof. The first two formulas are trivially true when m = 1 and so is the third if m =1 or
n =1 or if (m,n) > 1. We assume that m,n > 1 and (m,n) = 1.

Thus m = p;---p, and n = q; - - - g5 for some primes p; and ¢; and p; # ¢; for all 1 <7 <
r,1 < j <s. Then

r

m:Hpi:H(1+(pi_1)):1+Z(pi_1)+ > (o —Dlpn — D+

i=1 1<iy <ig<r

... products of 3,4 and so on factors ...

Since m is odd, so are the primes p;. Therefore p;—1 =0 (mod 2) and (p;;, —1)(p;,—1) =0
(mod 4). Therefore all the terms in the above sum that are implicit are also divisible by 4.
Hence

m=1+ Z:(pZ —1) (mod 4),

which is to say
T

m—1=> (p;—1) (mod 4).

i=1
Since m and the p;’s are odd, it follows that m—1 =0 (mod 2) and p; —1 =0 (mod 2),1 <
1 < r. Thus we can divide each term above by 2 and still get integers. It follows that

m—1 =pi—1
TEZ 5 (mod 2), (1)
=1
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Similarly,



T

m? = [Ipf =] O+ GF=D) =143 i =D+ > 0 -6 -1+

i=1 1<i1 <9 <r
... products of 3,4 and so on factors ...

We use again the fact that both m and the p; are odd. That means that m? — 1 =
(m —1)(m + 1) is the product of two consecutive even integers, so one of them is divisible
by 4. Thus m* — 1 =0 (mod 8) and likewise p? — 1 =0 (mod 8),1 < i < r. It follows that
the product of two or more factors in the above summation is divisible by 64, hence

r

m’>—1=> (p} —1) (mod 64).

i=1

Moreover each term is divisible by 8, so

m?—1 _ p?—-1
3 EZ 3 (mod 8),
=1

as integers. It follows that

2

=1

The last part of the theorem, in the case m,n > 1 and (m,n) = 1, is equivalent to
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1<i<r 1<i<r 1<5<s

1<5<s

-1 -1
By (1), we have t = mT - 5 (mod 2) and the quadratic reciprocity law follows.
0

Jacobi symbols have many applications. The following result is an example of how they
can be used in the study of certain Diophantine equations.



Proposition 3. The Diophantine equation
y2 _ 1'3 + k
has no solution if k = (4n — 1)3 — 4m? and no prime p = 3 (mod 4) divides m.

Proof. We argue by contradiction. Assume that (x,y) is a solution. Since k = —1 (mod 4),
it follows that
y* =2 —1 (mod 4).

But y?> = 0,1 (mod 4), so z cannot be even and x # —1 (mod 4). Therefore x = 1 (mod 4).
Let a =4n — 1. Then a = —1 (mod 4) and k = a® — 4m?. We have

v =2 + k=2 +d® — 4m?
SO
Y +4m? =2 +a® = (v +a)(2® — ax + d?). (2)

Given that z =1 (mod 4) and a = —1 (mod 4), we have that the last factor
v —ar+a*=3 (mod 4).

Thus 2% — ax +a? is odd and it must have some prime divisor p = 3 (mod 4). But (2) implies
that p | y? + 4m?, i.e. —4m? =y* (mod p) so

()

On the other hand, since p = 3 (mod 4), we have that p t m and therefore
—4m? -1
( m ) = (—) = —1 (contradiction!)
p p

Proposition 4. If m,n are positive odd integers and is an integer with D = 0,1 (mod 4)

such that m =n (mod D), then
D\ (D
m) \n)

Proof. First we treat the case when D =1 (mod 4).
If D >0, then

]

D m

But % is even, hence (—) = 5) . The argument holds for any positive odd integer
m

m, and it can therefore be applied just as well to n. The result follows immediately

since m =n (mod D).



If D <0, set d=—D. Thend > 0 and d =3 (mod 4), so 4! is even. We have

(o) = ()= GG === (5) = o= ()= ()

Since the same holds for n, the result follows from the fact that m = n (mod d).

Now consider the other case, D = 0 (mod 4). It follows that D = 2%b for some positive
odd integer b and a > 2.

B)- G )-coeem)

If D >0, then

Similarly,

8 8

and
m—1b—1 n—-1b-1

2 2 2 2

(mod 2). (4)
We have
m—-1b—1 n—-1b—-1 m-nb-1
2 2 2 2 2 2
and this is even since 4 | m — n. Thus (4) is proved. For the other relation, we have

m? —1 n?—1 m*—n (m—n)(m+n)
a— a= a= a.

8 8 8 8

Now 2 | m+mn and 2% | m —n. Thus m? —n? =0 (mod 16) when a > 3 and (3) follows
in this case. On the other hand, if a = 2, then #a is again even and we are done.

(We used the fact that # €Z.)

If D<0, setd=—D. Then d >0 and d =0 (mod 4). From above it follows that

()= ()

We also have




and, similarly,

D n—1 d
— )l =(=1)"= [=].
The result follows from the fact that

m—1_ n-—1 m—n

2 2

m=n (mod D)
D=0 (mod4).

(mod 2) «— 2| <:>4]m—n<:{

]

Theorem 5. Let D = 0,1 (mod 4) be a nonzero integer. Then there exists a unique group
homomorphism xp : (Z/DZ)* — {&1} such that

D
xo([p]) = (—> (the Legendre symbol modulo p) for all odd primes p t D.
p

Furthermore,

-, 1221

Proof. First we show existence. Let
D

x: (Z/DZ)* — {%1}, x([a]) = (—) where m =a (mod D) is an odd positive integer.
m

We need to show that this is a well-defined map, and for that we need to prove the following
two facts.

Claim 1 For any (a, D) = 1 there exists a positive odd integer m = a (mod D).
Claim 2 If m,n are positive odd integers and m = n (mod D), then

()= (2)

The second claim is an immediate consequence of Proposition 4. The first one, is also easy.
There exists some integer k for which a + kD > 0. If D is even, then a has to be odd and
a+ kD is odd and positive. If D is odd, then either a+ kD or a+ kD + | D| is both odd and
positive.
The map x is clearly a group homomorphism since the Jacobi symbol is completely multi-
plicative. The condition on primes is just as clear.

Now we have to prove uniqueness. Assume that f : (Z/DZ)* — {&1} is a group

D
homomorphism with f([p]) = (—) for any odd prime p 1 D. Clearly f(m) = 1. Also, for
p

any odd integer m > 1, we have m = p; - - - p, for some odd primes py,...,p,. Then
) = £+ £ = (52) () = (32) = )
e P\ p)  \m) —
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Since we have shown that every class [a] € (Z/DZ)™ contains a positive odd integer m, it
follows that f([a]) = x([a]) for all [a] € (Z/DZ)™ .
The proof for the expression of xp([—1]) is left as an exercise.



