
Jacobi symbols

Definition. Let m be an odd positive integer.

• If m = 1, the Jacobi symbol

(
1

)
: Z→ C is the constant function 1.

• If m > 1, it has a decomposition as a product of (not necessarily distinct) primes

m = p1 · · · pr. The Jacobi symbol

(
m

)
: Z→ C is given by

(
a

m

)
=

(
a

p1

)
· · ·
(
a

pr

)
.

Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and
nonresidues. That is, we could have

(
a
m

)
= 1 just because two of the factors happen to be

−1. For instance, (
2

15

)
=

(
2

3

)(
2

5

)
= (−1)(−1) = 1,

but 2 is not a square modulo 15. The following properties of the Jacobi symbol are direct
consequences of its definition.

Proposition 1. Let m,n be positive odd integers and a, b ∈ Z. Then

(i)

(
1

m

)
= 1;

(ii)

(
a

m

)
= 0 ⇐⇒ (a,m) > 1;

(iii) a ≡ b (mod m) =⇒
(
a

m

)
=

(
b

m

)
;

(iv)

(
ab

m

)
=

(
a

m

)(
b

m

)
;

(v)

(
a

mn

)
=

(
a

m

)(
a

n

)
;
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(vi) (a,m) = 1 =⇒
(
a2b

m

)
=

(
b

m

)
.

Proof. Exercise.

Theorem 2. Let m,n be positive odd integers. Then

(i)

(
−1

m

)
= (−1)

m−1
2 ;

(ii)

(
2

m

)
= (−1)

m2−1
8 ;

(iii)

(
n

m

)
= (−1)

m−1
2

n−1
2

(
m

n

)
.

Proof. The first two formulas are trivially true when m = 1 and so is the third if m = 1 or
n = 1 or if (m,n) > 1. We assume that m,n > 1 and (m,n) = 1.
Thus m = p1 · · · pr and n = q1 · · · qs for some primes pi and qj and pi 6= qj for all 1 ≤ i ≤
r, 1 ≤ j ≤ s. Then

m =
r∏

i=1

pi =
r∏

i=1

(1 + (pi − 1)) = 1 +
r∑

i=1

(pi − 1) +
∑

1≤i1<i2≤r

(pi1 − 1)(pi2 − 1)+

. . . products of 3, 4 and so on factors . . .

Since m is odd, so are the primes pi. Therefore pi−1 ≡ 0 (mod 2) and (pi1−1)(pi2−1) ≡ 0
(mod 4). Therefore all the terms in the above sum that are implicit are also divisible by 4.
Hence

m ≡ 1 +
r∑

i=1

(pi − 1) (mod 4),

which is to say

m− 1 ≡
r∑

i=1

(pi − 1) (mod 4).

Since m and the pi’s are odd, it follows that m−1 ≡ 0 (mod 2) and p1−1 ≡ 0 (mod 2), 1 ≤
i ≤ r. Thus we can divide each term above by 2 and still get integers. It follows that

m− 1

2
≡

r∑
i=1

pi − 1

2
(mod 2), (1)

so

(−1)
m−1

2 = (−1)
∑r

i=1
pi−1

2 =
r∏

i=1

(−1)
pi−1

2 =
r∏

i=1

(
−1

pi

)
=

(
−1

m

)
.

Similarly,
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m2 =
r∏

i=1

p2i =
r∏

i=1

(
1 + (p2i − 1)

)
= 1 +

r∑
i=1

(p2i − 1) +
∑

1≤i1<i2≤r

(p2i1 − 1)(p2i2 − 1)+

. . . products of 3, 4 and so on factors . . .

We use again the fact that both m and the pi are odd. That means that m2 − 1 =
(m − 1)(m + 1) is the product of two consecutive even integers, so one of them is divisible
by 4. Thus m2 − 1 ≡ 0 (mod 8) and likewise p2i − 1 ≡ 0 (mod 8), 1 ≤ i ≤ r. It follows that
the product of two or more factors in the above summation is divisible by 64, hence

m2 − 1 ≡
r∑

i=1

(p2i − 1) (mod 64).

Moreover each term is divisible by 8, so

m2 − 1

8
≡

r∑
i=1

p2i − 1

8
(mod 8),

as integers. It follows that

(−1)
m2−1

8 = (−1)
∑r

i=1

p2i−1

8 =
r∏

i=1

(−1)
p2i−1

8 =
r∏

i=1

(
2

pi

)
=

(
2

m

)
.

The last part of the theorem, in the case m,n > 1 and (m,n) = 1, is equivalent to(
m

n

)(
n

m

)
= (−1)

m−1
2

n−1
2 .

But (
m

n

)(
n

m

)
=
∏

1≤i≤r
1≤j≤s

(
pi
qj

)(
qj
pi

)
=
∏

1≤i≤r
1≤j≤s

(−1)
pi−1

2

qj−1

2 = (−1)t

where

t =
∑
1≤i≤r
1≤j≤s

pi − 1

2
· qj − 1

2
=
∑
1≤i≤r

pi − 1

2

∑
1≤j≤s

qj − 1

2
.

By (1), we have t ≡ m− 1

2
· n− 1

2
(mod 2) and the quadratic reciprocity law follows.

Jacobi symbols have many applications. The following result is an example of how they
can be used in the study of certain Diophantine equations.
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Proposition 3. The Diophantine equation

y2 = x3 + k

has no solution if k = (4n− 1)3 − 4m2 and no prime p ≡ 3 (mod 4) divides m.

Proof. We argue by contradiction. Assume that (x, y) is a solution. Since k ≡ −1 (mod 4),
it follows that

y2 ≡ x3 − 1 (mod 4).

But y2 ≡ 0, 1 (mod 4), so x cannot be even and x 6≡ −1 (mod 4). Therefore x ≡ 1 (mod 4).
Let a = 4n− 1. Then a ≡ −1 (mod 4) and k = a3 − 4m2. We have

y2 = x3 + k = x3 + a3 − 4m2,

so
y2 + 4m2 = x3 + a3 = (x+ a)(x2 − ax+ a2). (2)

Given that x ≡ 1 (mod 4) and a ≡ −1 (mod 4), we have that the last factor

x2 − ax+ a2 ≡ 3 (mod 4).

Thus x2−ax+a2 is odd and it must have some prime divisor p ≡ 3 (mod 4). But (2) implies
that p | y2 + 4m2, i.e. −4m2 ≡ y2 (mod p) so(

−4m2

p

)
= 1.

On the other hand, since p ≡ 3 (mod 4), we have that p - m and therefore(
−4m2

p

)
=

(
−1

p

)
= −1 (contradiction!)

Proposition 4. If m,n are positive odd integers and is an integer with D ≡ 0, 1 (mod 4)
such that m ≡ n (mod D), then (

D

m

)
=

(
D

n

)
.

Proof. First we treat the case when D ≡ 1 (mod 4).

If D > 0, then (
D

m

)
= (−1)

m−1
2

D−1
2

(
m

D

)
.

But D−1
2

is even, hence

(
D

m

)
=

(
m

D

)
. The argument holds for any positive odd integer

m, and it can therefore be applied just as well to n. The result follows immediately
since m ≡ n (mod D).
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If D < 0, set d = −D. Then d > 0 and d ≡ 3 (mod 4), so d+1
2

is even. We have(
D

m

)
=

(
−d
m

)
=

(
−1

m

)(
d

m

)
= (−1)

m−1
2 (−1)

m−1
2

d−1
2

(
m

d

)
= (−1)

m−1
2

d+1
2

(
m

d

)
=

(
m

d

)
.

Since the same holds for n, the result follows from the fact that m ≡ n (mod d).

Now consider the other case, D ≡ 0 (mod 4). It follows that D = 2ab for some positive
odd integer b and a ≥ 2.

If D > 0, then (
D

m

)
=

(
2

m

)a(
b

m

)
= (−1)

m2−1
8

a(−1)
m−1

2
b−1
2

(
m

b

)
.

Similarly, (
D

n

)
= (−1)

n2−1
8

a(−1)
n−1
2

b−1
2

(
n

b

)
.

The result would follow if we showed that

m2 − 1

8
a ≡ n2 − 1

8
a (mod 2) (3)

and
m− 1

2

b− 1

2
≡ n− 1

2

b− 1

2
(mod 2). (4)

We have
m− 1

2

b− 1

2
− n− 1

2

b− 1

2
=
m− n

2

b− 1

2

and this is even since 4 | m− n. Thus (4) is proved. For the other relation, we have

m2 − 1

8
a− n2 − 1

8
a =

m2 − n2

8
a =

(m− n)(m+ n)

8
a.

Now 2 | m+n and 2a | m−n. Thus m2−n2 ≡ 0 (mod 16) when a ≥ 3 and (3) follows
in this case. On the other hand, if a = 2, then m2−n2

8
a is again even and we are done.

(We used the fact that m2−n2

8
∈ Z.)

If D < 0, set d = −D. Then d > 0 and d ≡ 0 (mod 4). From above it follows that(
d

m

)
=

(
d

n

)
.

We also have (
D

m

)
=

(
−d
m

)
=

(
−1

m

)(
d

m

)
= (−1)

m−1
2

(
d

m

)
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and, similarly, (
D

n

)
= (−1)

n−1
2

(
d

n

)
.

The result follows from the fact that

m− 1

2
≡ n− 1

2
(mod 2) ⇐⇒ 2 | m− n

2
⇐⇒ 4 | m− n⇐

{
m ≡ n (mod D)

D ≡ 0 (mod 4).

Theorem 5. Let D ≡ 0, 1 (mod 4) be a nonzero integer. Then there exists a unique group
homomorphism χD : (Z/DZ)× → {±1} such that

χD([p]) =

(
D

p

)
(the Legendre symbol modulo p) for all odd primes p - D.

Furthermore,

χD([−1]) =

{
1 if D > 0;

−1 if D < 0.

Proof. First we show existence. Let

χ : (Z/DZ)× → {±1}, χ([a]) =

(
D

m

)
where m ≡ a (mod D) is an odd positive integer.

We need to show that this is a well-defined map, and for that we need to prove the following
two facts.

Claim 1 For any (a,D) = 1 there exists a positive odd integer m ≡ a (mod D).
Claim 2 If m,n are positive odd integers and m ≡ n (mod D), then(

D

m

)
=

(
D

n

)
.

The second claim is an immediate consequence of Proposition 4. The first one, is also easy.
There exists some integer k for which a + kD > 0. If D is even, then a has to be odd and
a+ kD is odd and positive. If D is odd, then either a+ kD or a+ kD+ |D| is both odd and
positive.
The map χ is clearly a group homomorphism since the Jacobi symbol is completely multi-
plicative. The condition on primes is just as clear.

Now we have to prove uniqueness. Assume that f : (Z/DZ)× → {±1} is a group

homomorphism with f([p]) =

(
D

p

)
for any odd prime p - D. Clearly f(m) = 1. Also, for

any odd integer m > 1, we have m = p1 · · · pr for some odd primes p1, . . . , pr. Then

f([m]) = f([p1]) · · · f([pr]) =

(
D

p1

)
· · ·
(
D

pr

)
=

(
D

m

)
= χ([m]).
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Since we have shown that every class [a] ∈ (Z/DZ)× contains a positive odd integer m, it
follows that f([a]) = χ([a]) for all [a] ∈ (Z/DZ)× .
The proof for the expression of χD([−1]) is left as an exercise.
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