Jacobi symbols

Definition. Let m be an odd positive integer.

- If $m=1$, the Jacobi symbol $\left(\frac{-}{1}\right): \mathbb{Z} \rightarrow \mathbb{C}$ is the constant function 1 .
- If $m>1$, it has a decomposition as a product of (not necessarily distinct) primes $m=p_{1} \cdots p_{r}$. The Jacobi symbol $(\bar{m}): \mathbb{Z} \rightarrow \mathbb{C}$ is given by

$$
\left(\frac{a}{m}\right)=\left(\frac{a}{p_{1}}\right) \cdots\left(\frac{a}{p_{r}}\right) .
$$

Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have $\left(\frac{a}{m}\right)=1$ just because two of the factors happen to be -1 . For instance,

$$
\left(\frac{2}{15}\right)=\left(\frac{2}{3}\right)\left(\frac{2}{5}\right)=(-1)(-1)=1
$$

but 2 is not a square modulo 15 . The following properties of the Jacobi symbol are direct consequences of its definition.

Proposition 1. Let m, n be positive odd integers and $a, b \in \mathbb{Z}$. Then
(i) $\left(\frac{1}{m}\right)=1$;
(ii) $\left(\frac{a}{m}\right)=0 \Longleftrightarrow(a, m)>1$;
(iii) $a \equiv b(\bmod m) \Longrightarrow\left(\frac{a}{m}\right)=\left(\frac{b}{m}\right)$;
(iv) $\left(\frac{a b}{m}\right)=\left(\frac{a}{m}\right)\left(\frac{b}{m}\right)$;
(v) $\left(\frac{a}{m n}\right)=\left(\frac{a}{m}\right)\left(\frac{a}{n}\right)$;
(vi) $(a, m)=1 \Longrightarrow\left(\frac{a^{2} b}{m}\right)=\left(\frac{b}{m}\right)$.

Proof. Exercise.
Theorem 2. Let m, n be positive odd integers. Then
(i) $\left(\frac{-1}{m}\right)=(-1)^{\frac{m-1}{2}}$;
(ii) $\left(\frac{2}{m}\right)=(-1)^{\frac{m^{2}-1}{8}}$;
(iii) $\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \frac{n-1}{2}}\left(\frac{m}{n}\right)$.

Proof. The first two formulas are trivially true when $m=1$ and so is the third if $m=1$ or $n=1$ or if $(m, n)>1$. We assume that $m, n>1$ and $(m, n)=1$.
Thus $m=p_{1} \cdots p_{r}$ and $n=q_{1} \cdots q_{s}$ for some primes p_{i} and q_{j} and $p_{i} \neq q_{j}$ for all $1 \leq i \leq$ $r, 1 \leq j \leq s$. Then

$$
m=\prod_{i=1}^{r} p_{i}=\prod_{i=1}^{r}\left(1+\left(p_{i}-1\right)\right)=1+\sum_{i=1}^{r}\left(p_{i}-1\right)+\sum_{1 \leq i_{1}<i_{2} \leq r}\left(p_{i_{1}}-1\right)\left(p_{i_{2}}-1\right)+
$$

\ldots products of 3,4 and so on factors ...
Since m is odd, so are the primes p_{i}. Therefore $p_{i}-1 \equiv 0(\bmod 2)$ and $\left(p_{i_{1}}-1\right)\left(p_{i_{2}}-1\right) \equiv 0$ $(\bmod 4)$. Therefore all the terms in the above sum that are implicit are also divisible by 4. Hence

$$
m \equiv 1+\sum_{i=1}^{r}\left(p_{i}-1\right) \quad(\bmod 4)
$$

which is to say

$$
m-1 \equiv \sum_{i=1}^{r}\left(p_{i}-1\right) \quad(\bmod 4)
$$

Since m and the p_{i} 's are odd, it follows that $m-1 \equiv 0(\bmod 2)$ and $p_{1}-1 \equiv 0(\bmod 2), 1 \leq$ $i \leq r$. Thus we can divide each term above by 2 and still get integers. It follows that

$$
\begin{equation*}
\frac{m-1}{2} \equiv \sum_{i=1}^{r} \frac{p_{i}-1}{2} \quad(\bmod 2) \tag{1}
\end{equation*}
$$

so

$$
(-1)^{\frac{m-1}{2}}=(-1)^{\sum_{i=1}^{r} \frac{p_{i}-1}{2}}=\prod_{i=1}^{r}(-1)^{\frac{p_{i}-1}{2}}=\prod_{i=1}^{r}\left(\frac{-1}{p_{i}}\right)=\left(\frac{-1}{m}\right) .
$$

Similarly,

$$
m^{2}=\prod_{i=1}^{r} p_{i}^{2}=\prod_{i=1}^{r}\left(1+\left(p_{i}^{2}-1\right)\right)=1+\sum_{i=1}^{r}\left(p_{i}^{2}-1\right)+\sum_{1 \leq i_{1}<i_{2} \leq r}\left(p_{i_{1}}^{2}-1\right)\left(p_{i_{2}}^{2}-1\right)+
$$

\ldots products of 3,4 and so on factors ...
We use again the fact that both m and the p_{i} are odd. That means that $m^{2}-1=$ $(m-1)(m+1)$ is the product of two consecutive even integers, so one of them is divisible by 4 . Thus $m^{2}-1 \equiv 0(\bmod 8)$ and likewise $p_{i}^{2}-1 \equiv 0(\bmod 8), 1 \leq i \leq r$. It follows that the product of two or more factors in the above summation is divisible by 64 , hence

$$
m^{2}-1 \equiv \sum_{i=1}^{r}\left(p_{i}^{2}-1\right) \quad(\bmod 64)
$$

Moreover each term is divisible by 8 , so

$$
\frac{m^{2}-1}{8} \equiv \sum_{i=1}^{r} \frac{p_{i}^{2}-1}{8} \quad(\bmod 8)
$$

as integers. It follows that

$$
(-1)^{\frac{m^{2}-1}{8}}=(-1)^{\sum_{i=1}^{r} \frac{p_{i}^{2}-1}{8}}=\prod_{i=1}^{r}(-1)^{\frac{p_{i}^{2}-1}{8}}=\prod_{i=1}^{r}\left(\frac{2}{p_{i}}\right)=\left(\frac{2}{m}\right) .
$$

The last part of the theorem, in the case $m, n>1$ and $(m, n)=1$, is equivalent to

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \frac{n-1}{2}} .
$$

But

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=\prod_{\substack{1 \leq i \leq r \\ 1 \leq j \leq s}}\left(\frac{p_{i}}{q_{j}}\right)\left(\frac{q_{j}}{p_{i}}\right)=\prod_{\substack{1 \leq \leq \leq r \\ 1 \leq j \leq s}}(-1)^{\frac{p_{i}-1}{2} \frac{q_{j}-1}{2}}=(-1)^{t}
$$

where

$$
t=\sum_{\substack{1 \leq i \leq r \\ 1 \leq j \leq s}} \frac{p_{i}-1}{2} \cdot \frac{q_{j}-1}{2}=\sum_{1 \leq i \leq r} \frac{p_{i}-1}{2} \sum_{1 \leq j \leq s} \frac{q_{j}-1}{2} .
$$

By (1), we have $t \equiv \frac{m-1}{2} \cdot \frac{n-1}{2}(\bmod 2)$ and the quadratic reciprocity law follows.

Jacobi symbols have many applications. The following result is an example of how they can be used in the study of certain Diophantine equations.

Proposition 3. The Diophantine equation

$$
y^{2}=x^{3}+k
$$

has no solution if $k=(4 n-1)^{3}-4 m^{2}$ and no prime $p \equiv 3(\bmod 4)$ divides m.
Proof. We argue by contradiction. Assume that (x, y) is a solution. Since $k \equiv-1(\bmod 4)$, it follows that

$$
y^{2} \equiv x^{3}-1 \quad(\bmod 4)
$$

But $y^{2} \equiv 0,1(\bmod 4)$, so x cannot be even and $x \not \equiv-1(\bmod 4)$. Therefore $x \equiv 1(\bmod 4)$.
Let $a=4 n-1$. Then $a \equiv-1(\bmod 4)$ and $k=a^{3}-4 m^{2}$. We have

$$
y^{2}=x^{3}+k=x^{3}+a^{3}-4 m^{2},
$$

so

$$
\begin{equation*}
y^{2}+4 m^{2}=x^{3}+a^{3}=(x+a)\left(x^{2}-a x+a^{2}\right) . \tag{2}
\end{equation*}
$$

Given that $x \equiv 1(\bmod 4)$ and $a \equiv-1(\bmod 4)$, we have that the last factor

$$
x^{2}-a x+a^{2} \equiv 3 \quad(\bmod 4) .
$$

Thus $x^{2}-a x+a^{2}$ is odd and it must have some prime divisor $p \equiv 3(\bmod 4)$. But (2) implies that $p \mid y^{2}+4 m^{2}$, i.e. $-4 m^{2} \equiv y^{2}(\bmod p)$ so

$$
\left(\frac{-4 m^{2}}{p}\right)=1
$$

On the other hand, since $p \equiv 3(\bmod 4)$, we have that $p \nmid m$ and therefore

$$
\left(\frac{-4 m^{2}}{p}\right)=\left(\frac{-1}{p}\right)=-1(\text { contradiction! })
$$

Proposition 4. If m, n are positive odd integers and is an integer with $D \equiv 0,1(\bmod 4)$ such that $m \equiv n(\bmod D)$, then

$$
\left(\frac{D}{m}\right)=\left(\frac{D}{n}\right)
$$

Proof. First we treat the case when $D \equiv 1(\bmod 4)$.
If $D>0$, then

$$
\left(\frac{D}{m}\right)=(-1)^{\frac{m-1}{2} \frac{D-1}{2}}\left(\frac{m}{D}\right) .
$$

But $\frac{D-1}{2}$ is even, hence $\left(\frac{D}{m}\right)=\left(\frac{m}{D}\right)$. The argument holds for any positive odd integer m, and it can therefore be applied just as well to n. The result follows immediately since $m \equiv n(\bmod D)$.

If $D<0$, set $d=-D$. Then $d>0$ and $d \equiv 3(\bmod 4)$, so $\frac{d+1}{2}$ is even. We have

$$
\left(\frac{D}{m}\right)=\left(\frac{-d}{m}\right)=\left(\frac{-1}{m}\right)\left(\frac{d}{m}\right)=(-1)^{\frac{m-1}{2}}(-1)^{\frac{m-1}{2} \frac{d-1}{2}}\left(\frac{m}{d}\right)=(-1)^{\frac{m-1}{2} \frac{d+1}{2}}\left(\frac{m}{d}\right)=\left(\frac{m}{d}\right)
$$

Since the same holds for n, the result follows from the fact that $m \equiv n(\bmod d)$.
Now consider the other case, $D \equiv 0(\bmod 4)$. It follows that $D=2^{a} b$ for some positive odd integer b and $a \geq 2$.

If $D>0$, then

$$
\left(\frac{D}{m}\right)=\left(\frac{2}{m}\right)^{a}\left(\frac{b}{m}\right)=(-1)^{\frac{m^{2}-1}{8} a}(-1)^{\frac{m-1}{2} \frac{b-1}{2}}\left(\frac{m}{b}\right)
$$

Similarly,

$$
\left(\frac{D}{n}\right)=(-1)^{\frac{n^{2}-1}{8} a}(-1)^{\frac{n-1}{2} \frac{b-1}{2}}\left(\frac{n}{b}\right) .
$$

The result would follow if we showed that

$$
\begin{equation*}
\frac{m^{2}-1}{8} a \equiv \frac{n^{2}-1}{8} a \quad(\bmod 2) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{m-1}{2} \frac{b-1}{2} \equiv \frac{n-1}{2} \frac{b-1}{2} \quad(\bmod 2) . \tag{4}
\end{equation*}
$$

We have

$$
\frac{m-1}{2} \frac{b-1}{2}-\frac{n-1}{2} \frac{b-1}{2}=\frac{m-n}{2} \frac{b-1}{2}
$$

and this is even since $4 \mid m-n$. Thus (4) is proved. For the other relation, we have

$$
\frac{m^{2}-1}{8} a-\frac{n^{2}-1}{8} a=\frac{m^{2}-n^{2}}{8} a=\frac{(m-n)(m+n)}{8} a .
$$

Now $2 \mid m+n$ and $2^{a} \mid m-n$. Thus $m^{2}-n^{2} \equiv 0(\bmod 16)$ when $a \geq 3$ and (3) follows in this case. On the other hand, if $a=2$, then $\frac{m^{2}-n^{2}}{8} a$ is again even and we are done. (We used the fact that $\frac{m^{2}-n^{2}}{8} \in \mathbb{Z}$.)

If $D<0$, set $d=-D$. Then $d>0$ and $d \equiv 0(\bmod 4)$. From above it follows that

$$
\left(\frac{d}{m}\right)=\left(\frac{d}{n}\right) .
$$

We also have

$$
\left(\frac{D}{m}\right)=\left(\frac{-d}{m}\right)=\left(\frac{-1}{m}\right)\left(\frac{d}{m}\right)=(-1)^{\frac{m-1}{2}}\left(\frac{d}{m}\right)
$$

and, similarly,

$$
\left(\frac{D}{n}\right)=(-1)^{\frac{n-1}{2}}\left(\frac{d}{n}\right)
$$

The result follows from the fact that

$$
\frac{m-1}{2} \equiv \frac{n-1}{2} \quad(\bmod 2) \Longleftrightarrow 2\left|\frac{m-n}{2} \Longleftrightarrow 4\right| m-n \Leftarrow \begin{cases}m \equiv n & (\bmod D) \\ D \equiv 0 & (\bmod 4)\end{cases}
$$

Theorem 5. Let $D \equiv 0,1(\bmod 4)$ be a nonzero integer. Then there exists a unique group homomorphism $\chi_{D}:(\mathbb{Z} / D \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$ such that

$$
\chi_{D}([p])=\left(\frac{D}{p}\right) \text { (the Legendre symbol modulo } p \text {) for all odd primes } p \nmid D .
$$

Furthermore,

$$
\chi_{D}([-1])= \begin{cases}1 & \text { if } D>0 \\ -1 & \text { if } D<0\end{cases}
$$

Proof. First we show existence. Let

$$
\chi:(\mathbb{Z} / D \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}, \chi([a])=\left(\frac{D}{m}\right) \text { where } m \equiv a \quad(\bmod D) \text { is an odd positive integer. }
$$

We need to show that this is a well-defined map, and for that we need to prove the following two facts.

Claim 1 For any $(a, D)=1$ there exists a positive odd integer $m \equiv a(\bmod D)$.
Claim 2 If m, n are positive odd integers and $m \equiv n(\bmod D)$, then

$$
\left(\frac{D}{m}\right)=\left(\frac{D}{n}\right)
$$

The second claim is an immediate consequence of Proposition 4. The first one, is also easy. There exists some integer k for which $a+k D>0$. If D is even, then a has to be odd and $a+k D$ is odd and positive. If D is odd, then either $a+k D$ or $a+k D+|D|$ is both odd and positive.
The map χ is clearly a group homomorphism since the Jacobi symbol is completely multiplicative. The condition on primes is just as clear.

Now we have to prove uniqueness. Assume that $f:(\mathbb{Z} / D \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$ is a group homomorphism with $f([p])=\left(\frac{D}{p}\right)$ for any odd prime $p \nmid D$. Clearly $f(m)=1$. Also, for any odd integer $m>1$, we have $m=p_{1} \cdots p_{r}$ for some odd primes p_{1}, \ldots, p_{r}. Then

$$
f([m])=f\left(\left[p_{1}\right]\right) \cdots f\left(\left[p_{r}\right]\right)=\left(\frac{D}{p_{1}}\right) \cdots\left(\frac{D}{p_{r}}\right)=\left(\frac{D}{m}\right)=\chi([m]) .
$$

Since we have shown that every class $[a] \in(\mathbb{Z} / D \mathbb{Z})^{\times}$contains a positive odd integer m, it follows that $f([a])=\chi([a])$ for all $[a] \in(\mathbb{Z} / D \mathbb{Z})^{\times}$.
The proof for the expression of $\chi_{D}([-1])$ is left as an exercise.

