HOMEWORK 7

DUE 28 FEBRUARY 2013

1. Find all integer solutions to $y^{2}=x^{5}-1$. Hint: similar to the case $y^{2}=x^{3}-1$. Do not forget to account for fifth roots of unity.
2. Find the prime factorization of the following integers in $\mathbb{Z}[i]$.
(a) 23
(b) 13
(c) 17
(d) 296
(e) 415
3. Find the prime factorization of the following gaussian integers in $\mathbb{Z}[i]$.
(a) $2+12 i$
(b) $3+4 i$
(c) $7+3 i$
(d) $10+9 i$
(e) $10+91 i$
4. Can 35 be written as the sum of two squares? How about 45 ? How about 245 ?
5. Find an integer that can be written as sum of two squares in 3 different ways.
6. Find an integer that can be written as sum of two squares in 4 different ways.
7. Find an integer that can be written as sum of two squares in 5 different ways.
