HOMEWORK 6

DUE 21 FEBRUARY 2013

1. Find all positive integer solutions to $x^{2}+12=y^{4}$.
2. Find all positive integer solutions to $x^{3}+y^{3}=20$.
3. For each of the following gaussian integers, determine if $\alpha \mid \beta$. Justify your answer.
(a) $\alpha=2, \beta=3+i$;
(b) $\alpha=1+i, \beta=3+i$;
(c) $\alpha=1+i, \beta=1599+2478 i$;
(d) $\alpha=3+4 i, \beta=3-4 i$;
(e) $\alpha=1+4 i, \beta=3-14 i$.
4. Determine if $1+4 i, 2+3 i$ and $9-7 i$ are prime elements of $\mathbb{Z}[i]$. Justify your answer.
5. Find the prime factorization of $2,3,5$ and 25 in $\mathbb{Z}[i]$.
6. Find a greatest common divisor for the following pairs of gaussian integers.
(a) $\alpha=2, \beta=3+i$;
(b) $\alpha=2, \beta=3+3 i$;
(c) $\alpha=1+i, \beta=1599+2478 i$.
7. Prove or disprove and salvage if possible the following statement: if α and β are relatively prime gaussian integers with $\alpha \beta=\gamma^{2}$ for some $\gamma \in \mathbb{Z}[i]$, then α and β are both squares.
