HOMEWORK 6

DUE 21 FEBRUARY 2013

- 1. Find all positive integer solutions to $x^2 + 12 = y^4$.
- **2.** Find all positive integer solutions to $x^3 + y^3 = 20$.
- **3.** For each of the following gaussian integers, determine if $\alpha \mid \beta$. Justify your answer.
 - (a) $\alpha = 2, \beta = 3 + i;$
 - (b) $\alpha = 1 + i, \beta = 3 + i;$
 - (c) $\alpha = 1 + i, \beta = 1599 + 2478i;$
 - (d) $\alpha = 3 + 4i, \beta = 3 4i;$
 - (e) $\alpha = 1 + 4i, \beta = 3 14i.$
- 4. Determine if 1 + 4i, 2 + 3i and 9 7i are prime elements of $\mathbb{Z}[i]$. Justify your answer.
- 5. Find the prime factorization of 2, 3, 5 and 25 in $\mathbb{Z}[i]$.
- 6. Find a greatest common divisor for the following pairs of gaussian integers.
 - (a) $\alpha = 2, \beta = 3 + i;$
 - (b) $\alpha = 2, \beta = 3 + 3i;$
 - (c) $\alpha = 1 + i, \beta = 1599 + 2478i.$
- 7. Prove or disprove and salvage if possible the following statement: if α and β are relatively prime gaussian integers with $\alpha\beta = \gamma^2$ for some $\gamma \in \mathbb{Z}[i]$, then α and β are both squares.