HOMEWORK 5

DUE 14 FEBRUARY 2013

1. Find all integer solutions to $x^{2}+3 y^{2}=z^{2}$ with $x>0, y>0, z>0$.
2. Find all integer solutions to $x^{2}+p y^{2}=z^{2}$ with $x>0, y>0, z>0$, where p is a fixed odd prime.
3. Find all integer solutions to $x^{2}+y^{2}=4 z^{2}$ with $x>0, y>0, z>0$ and $(x, y, z)=1$.
4. Find all positive integer solutions to $x^{3}-y^{3}=19$.
5. Find all integer solutions to $x^{2}-d y^{2}=1$ when d is a perfect square.
6. If x, y, z are integers with $x^{3}+y^{3}+z^{3}=0$, show that

$$
(x+y+z)^{3}=3(x+y)(y+z)(x+z) .
$$

Use this relation to show that 3 must divide one of the integers x, y, z.
7. Show that the equation

$$
x^{3}+y^{3}=z^{3}
$$

has no integer solutions with $3 \nmid x y z$.

