HOMEWORK 4

DUE 7 FEBRUARY 2013

1. This exercise concerns the homomorphism $\chi_{D}:(\mathbb{Z} / D \mathbb{Z})^{\times} \rightarrow\{ \pm 1\}$ of Theorem 5 from the Jacobi Symbol notes posted on the website. Recall that $D \equiv 0,1(\bmod 4)$ and that $\chi_{D}([a])=\left(\frac{D}{m}\right)$ where m is an odd positive integer with $m \equiv a(\bmod D)$.

If $D \equiv 1(\bmod 4)$, show that

$$
\chi_{D}([2])=\left\{\begin{array}{lll}
1 & \text { if } D \equiv 1 & (\bmod 8) ; \\
-1 & \text { if } D \equiv 5 & (\bmod 8) .
\end{array}\right.
$$

2. Find all positive integer solutions to the equation

$$
x^{2}+2 y^{2}=z^{2} .
$$

3. These are two identities used by Euler.
(a) Prove that

$$
\left(x^{2}+n y^{2}\right)\left(s^{2}+n t^{2}\right)=(s x \pm n t y)^{2}+n(t x \mp s y)^{2} .
$$

(b) Generalize the above to find an identity of the form

$$
\left(a x^{2}+c y^{2}\right)\left(a s^{2}+c t^{2}\right)=(?)^{2}+a c(?)^{2} .
$$

4. (a) Show that if $x^{5}+y^{5}+z^{5}=0$, then

$$
2(x+y+z)^{5}=5(x+y)(x+z)(y+z)\left[(x+y+z)^{2}+x^{2}+y^{2}+z^{2}\right]
$$

Use this to show that 5 divides one of the numbers x, y, z.
(b) Show that Fermat's equation

$$
x^{5}+y^{5}=w^{5}
$$

has no solution when 5 does not divide any of the numbers x, y, w.

