HOMEWORK 3

DUE 31 JANUARY 2013

1. Determine whether 888 is a quadratic residue or nonresidue modulo the prime 1999 using exclusively the Legendre symbol.
2. Determine whether 888 is a quadratic residue or nonresidue modulo 1999 by factoring $888=2 \cdot 4 \cdot 111$ and using Jacobi symbols.
3. Determine whether -104 is a quadratic residue or nonresidue modulo the prime 997.
4. Use quadratic reciprocity to determine the congruence classes of primes $p \neq 2,7$ in $(\mathbb{Z} / 28 \mathbb{Z})^{\times}$ with $\left(\frac{-7}{p}\right)=1$.
5. Use quadratic reciprocity to determine the congruence classes of primes $p \neq 2,3,7$ in $(\mathbb{Z} / 84 \mathbb{Z})^{\times}$with $\left(\frac{-21}{p}\right)=1$.
6. Compute $\left(\frac{3}{41}\right)$ and $\left(\frac{3}{47}\right)$.
7. We know that if m is an odd positive integer and $a, b \in \mathbb{Z}$ with $a \equiv b(\bmod m)$ then $\left(\frac{a}{m}\right)=\left(\frac{b}{m}\right)$. Prove or disprove the following statements.
(a) If m, n are positive odd integers and $a \in \mathbb{Z}$ such that $m \equiv n(\bmod a)$ then $\left(\frac{a}{m}\right)=\left(\frac{a}{n}\right)$.
(b) If m, n, a are positive odd integers and $m \equiv n(\bmod a)$ then $\left(\frac{a}{m}\right)=\left(\frac{a}{n}\right)$.
(c) If m, n, a are positive odd distinct integers and $m \equiv n(\bmod a)$ then $\left(\frac{a}{m}\right)=\left(\frac{a}{n}\right)$.
