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1 Pythagorean triples

We want to find all right triangles with all three sides of integral length. In other words, we
want to solve the diophantine equation

2?4+ y? =2 (1)

Note that any solution generates a positive solution by changing the sign, hence solving
the equation in Z is equivalent to solving it in Z.o, which is the same as finding all right
triangles with integral sides. We can further reduce the problem to finding solutions with
(x,y,z) = 1, that is we exclude similar triangles. Each such solution will generate infinitely
many solutions (dz, dy, dz) with ged = d and vice versa.

It is worth noticing that if a prime p divides two of the number x, y, z then it would have
to divide the third one as well. Hence we must have (z,y) = (y,2) = (z,2) = 1.
There is one more observation we can make to simply our problem.

Claim z # y (mod 2).

Proof. We know that we cannot have z = y = 0 (mod 2) because that force x and y to
not be relatively prime. We are going to argue by contradiction for the other case as well.
Assume that z = y = 1 (mod 2). Then z? = y?> = 1 (mod 4), and this would mean that
2> =2 (mod 4), which is impossible. O

Since x and y are interchangeable in our problem, we can assume without loss of generality
that = is odd and y is even. This also implies that z is odd. We can rewrite our equation as

=22 -1 =(z—2)(z +2)

and further as

y\?2  z—x z+w
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All the fractions above are really positive integers since y is even and z, z are both odd with
z > x. Next we want to use the following observation.

Fact If a,b,c € Z with (a,b) = 1 and ab = ¢?, then there exist integers a;,b; such that
a = a? and b = b3. Clearly a; and b; have to be relatively prime as well.
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prime that divides both of them. Then p divides both their sum and their difference, that is
it has to divide both x and z. That would imply that p divides y as well, and this contradicts

the fact that (x,y,z) = 1.
Hence the ged of the two fractions is indeed 1 and there must exist positive integers u
and v with (u,v) = 1 such that

In order to do that, we need to show that ged = 1. Assume that p is a

Z—x 9 z+x 9
=0 and =u".
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This leads to
= u? —v?
= 2uv
2 =u® + v’

Note that since x and z are odd, we must also have u Z v (mod 2). Also, x > 0 implies
u > v.
In short, we proved that all positive Pythagorean triples are of the form

r = d(u® —v?)
y = 2duv
z = d(u* + v?)

where u,v € Z, u > v >0 and u # v (mod 2).

2 More descent
We want to study the Fermat equation for n = 4,
ot 4yt =2t (2)

Fermat himself proved that it has no non-trivial solutions (i.e. no integer solutions with
xyz # 0). His proof uses again the method of descent.

Assume that z,y, z are positive integers satisfying (2). Set d = (z,y, 2). Then = = dx;,
y = dy; and z = dz; where (z1,y1,21) = 1 and x1, 91, 21 are also positive integers satisfying
the same equation (2). In particular, x3,y?, ¢, = 2% is a relatively prime Pythagorean triple.
In particular, x1,y;,t; are relatively prime positive integers that form a solution to the
equation

X'+ Yt =12 (3)

Note that z; and y; are interchangeable, so we can assume without loss of generality that
x1 is odd and y; is even. It follows from our study of Pythagorean triples (Section 1) there



exist integers u > v > 0 such that (u,v) =1 and u #Z v (mod 2) such that
2 =u? —0v?
Y3 = 2uv
t; = u? + v>.
Since x7 is odd, we have 7 = 1 (mod 4) and therefore u is odd and v is even.
Note that this implies further that (u,2v) = 1. Since u(2v) = 37 and 2v is even, we have
u = t2 and 2v = 4d? for some positive relatively prime integers to and d, with ¢, odd.
We can rewrite the formula for z; as
r] 4+ v = U’

Since (u,v) = 1 it follows that x1,v,u is a relatively prime Pythagorean triple with x; odd
and v even. Applying again the results from Section 1, there exist integers a > b > 0 such

that (a,0) =1, a b (mod 2) and
r1 =a® —b?
v = 2ab
u=a’+ b
Since v = 2ab and 2v = 4d* it follows that ab = d*. But (a,b) = 1 and therefore

a = 3, b = y2 for some integers zy > yo > 0 with (z3,2) = 1 and z9 # 32 (mod 2).
To recap, we have

= a*+ b
g :L‘g
=y
= 1.
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Therefore x5, 15, to are relatively prime positive integers that satisfy
Aok =8
But we also have
ty <t3 =u<u’+vP=t.
We proved that if we start with a relatively prime positive solution (x1,y1,%1) to (3) we

can produce another relatively prime solution (g, ys, t2) with 0 < t5 < t;. Applying this fact
over and over again we obtain infinitely many positive solutions (z,, Y., t,) to (3) with

O0<. .. <t, <th_1 <...<ty.

This is impossible because there are only finitely many integers between 0 and ¢;. (In fact,
there are t; — 1 of them!)

In short, the assumption that we can find a positive solution to (2) led to a contradiction,
and that proves that no such solution can exist.



