Descent I

1 Pythagorean triples

We want to find all right triangles with all three sides of integral length. In other words, we want to solve the diophantine equation

$$
\begin{equation*}
x^{2}+y^{2}=z^{2} \tag{1}
\end{equation*}
$$

Note that any solution generates a positive solution by changing the sign, hence solving the equation in \mathbb{Z} is equivalent to solving it in $\mathbb{Z}_{>0}$, which is the same as finding all right triangles with integral sides. We can further reduce the problem to finding solutions with $(x, y, z)=1$, that is we exclude similar triangles. Each such solution will generate infinitely many solutions ($d x, d y, d z$) with gcd $=d$ and vice versa.

It is worth noticing that if a prime p divides two of the number x, y, z then it would have to divide the third one as well. Hence we must have $(x, y)=(y, z)=(x, z)=1$.
There is one more observation we can make to simply our problem.
Claim $x \not \equiv y(\bmod 2)$.
Proof. We know that we cannot have $x \equiv y \equiv 0(\bmod 2)$ because that force x and y to not be relatively prime. We are going to argue by contradiction for the other case as well. Assume that $x \equiv y \equiv 1(\bmod 2)$. Then $x^{2} \equiv y^{2} \equiv 1(\bmod 4)$, and this would mean that $z^{2} \equiv 2(\bmod 4)$, which is impossible.

Since x and y are interchangeable in our problem, we can assume without loss of generality that x is odd and y is even. This also implies that z is odd. We can rewrite our equation as

$$
y^{2}=z^{2}-x^{2}=(z-x)(z+x)
$$

and further as

$$
\left(\frac{y}{2}\right)^{2}=\frac{z-x}{2} \cdot \frac{z+x}{2}
$$

All the fractions above are really positive integers since y is even and x, z are both odd with $z>x$. Next we want to use the following observation.
Fact If $a, b, c \in \mathbb{Z}$ with $(a, b)=1$ and $a b=c^{2}$, then there exist integers a_{1}, b_{1} such that $a=a_{1}^{2}$ and $b=b_{1}^{2}$. Clearly a_{1} and b_{1} have to be relatively prime as well.

In order to do that, we need to show that $\operatorname{gcd}\left(\frac{z-x}{2}, \frac{z+x}{2}\right)=1$. Assume that p is a prime that divides both of them. Then p divides both their sum and their difference, that is it has to divide both x and z. That would imply that p divides y as well, and this contradicts the fact that $(x, y, z)=1$.

Hence the gcd of the two fractions is indeed 1 and there must exist positive integers u and v with $(u, v)=1$ such that

$$
\frac{z-x}{2}=v^{2} \quad \text { and } \quad \frac{z+x}{2}=u^{2} .
$$

This leads to

$$
\left\{\begin{array}{l}
x=u^{2}-v^{2} \\
y=2 u v \\
z=u^{2}+v^{2}
\end{array}\right.
$$

Note that since x and z are odd, we must also have $u \not \equiv v(\bmod 2)$. Also, $x>0$ implies $u>v$.

In short, we proved that all positive Pythagorean triples are of the form

$$
\left\{\begin{array}{l}
x=d\left(u^{2}-v^{2}\right) \\
y=2 d u v \\
z=d\left(u^{2}+v^{2}\right)
\end{array}\right.
$$

where $u, v \in \mathbb{Z}, u>v>0$ and $u \not \equiv v(\bmod 2)$.

2 More descent

We want to study the Fermat equation for $n=4$,

$$
\begin{equation*}
x^{4}+y^{4}=z^{4} . \tag{2}
\end{equation*}
$$

Fermat himself proved that it has no non-trivial solutions (i.e. no integer solutions with $x y z \neq 0$). His proof uses again the method of descent.

Assume that x, y, z are positive integers satisfying (2). Set $d=(x, y, z)$. Then $x=d x_{1}$, $y=d y_{1}$ and $z=d z_{1}$ where $\left(x_{1}, y_{1}, z_{1}\right)=1$ and x_{1}, y_{1}, z_{1} are also positive integers satisfying the same equation (2). In particular, $x_{1}^{2}, y_{1}^{2}, t_{1}=z_{1}^{2}$ is a relatively prime Pythagorean triple. In particular, x_{1}, y_{1}, t_{1} are relatively prime positive integers that form a solution to the equation

$$
\begin{equation*}
X^{4}+Y^{4}=T^{2} . \tag{3}
\end{equation*}
$$

Note that x_{1} and y_{1} are interchangeable, so we can assume without loss of generality that x_{1} is odd and y_{1} is even. It follows from our study of Pythagorean triples (Section 1) there
exist integers $u>v>0$ such that $(u, v)=1$ and $u \not \equiv v(\bmod 2)$ such that

$$
\left\{\begin{array}{l}
x_{1}^{2}=u^{2}-v^{2} \\
y_{1}^{2}=2 u v \\
t_{1}=u^{2}+v^{2}
\end{array}\right.
$$

Since x_{1} is odd, we have $x_{1}^{2} \equiv 1(\bmod 4)$ and therefore u is odd and v is even.
Note that this implies further that $(u, 2 v)=1$. Since $u(2 v)=y_{1}^{2}$ and $2 v$ is even, we have $u=t_{2}^{2}$ and $2 v=4 d^{2}$ for some positive relatively prime integers t_{2} and d, with t_{2} odd.

We can rewrite the formula for x_{1} as

$$
x_{1}^{2}+v^{2}=u^{2} .
$$

Since $(u, v)=1$ it follows that x_{1}, v, u is a relatively prime Pythagorean triple with x_{1} odd and v even. Applying again the results from Section 1, there exist integers $a>b>0$ such that $(a, b)=1, a \not \equiv b(\bmod 2)$ and

$$
\left\{\begin{array}{l}
x_{1}=a^{2}-b^{2} \\
v=2 a b \\
u=a^{2}+b^{2}
\end{array}\right.
$$

Since $v=2 a b$ and $2 v=4 d^{2}$ it follows that $a b=d^{2}$. But $(a, b)=1$ and therefore $a=x_{2}^{2}, b=y_{2}^{2}$ for some integers $x_{2}>y_{2}>0$ with $\left(x_{2}, y_{2}\right)=1$ and $x_{2} \not \equiv y_{2}(\bmod 2)$.

To recap, we have

$$
\begin{aligned}
u & =a^{2}+b^{2} \\
a & =x_{2}^{2} \\
b & =y_{2}^{2} \\
u & =t_{2}^{2} .
\end{aligned}
$$

Therefore x_{2}, y_{2}, t_{2} are relatively prime positive integers that satisfy

$$
x_{2}^{4}+y_{2}^{4}=t_{2}^{2} .
$$

But we also have

$$
t_{2} \leq t_{2}^{4}=u^{2}<u^{2}+v^{2}=t_{1} .
$$

We proved that if we start with a relatively prime positive solution $\left(x_{1}, y_{1}, t_{1}\right)$ to (3) we can produce another relatively prime solution $\left(x_{2}, y_{2}, t_{2}\right)$ with $0<t_{2}<t_{1}$. Applying this fact over and over again we obtain infinitely many positive solutions $\left(x_{n}, y_{n}, t_{n}\right)$ to (3) with

$$
0<\ldots<t_{n}<t_{n-1}<\ldots<t_{1}
$$

This is impossible because there are only finitely many integers between 0 and t_{1}. (In fact, there are $t_{1}-1$ of them!)

In short, the assumption that we can find a positive solution to (2) led to a contradiction, and that proves that no such solution can exist.

