
Descent I

1 Pythagorean triples

We want to find all right triangles with all three sides of integral length. In other words, we
want to solve the diophantine equation

x2 + y2 = z2. (1)

Note that any solution generates a positive solution by changing the sign, hence solving
the equation in Z is equivalent to solving it in Z>0, which is the same as finding all right
triangles with integral sides. We can further reduce the problem to finding solutions with
(x, y, z) = 1, that is we exclude similar triangles. Each such solution will generate infinitely
many solutions (dx, dy, dz) with gcd = d and vice versa.

It is worth noticing that if a prime p divides two of the number x, y, z then it would have
to divide the third one as well. Hence we must have (x, y) = (y, z) = (x, z) = 1.
There is one more observation we can make to simply our problem.

Claim x 6≡ y (mod 2).

Proof. We know that we cannot have x ≡ y ≡ 0 (mod 2) because that force x and y to
not be relatively prime. We are going to argue by contradiction for the other case as well.
Assume that x ≡ y ≡ 1 (mod 2). Then x2 ≡ y2 ≡ 1 (mod 4), and this would mean that
z2 ≡ 2 (mod 4), which is impossible.

Since x and y are interchangeable in our problem, we can assume without loss of generality
that x is odd and y is even. This also implies that z is odd. We can rewrite our equation as

y2 = z2 − x2 = (z − x)(z + x)

and further as (y
2

)2
=

z − x

2
· z + x

2
.

All the fractions above are really positive integers since y is even and x, z are both odd with
z > x. Next we want to use the following observation.
Fact If a, b, c ∈ Z with (a, b) = 1 and ab = c2, then there exist integers a1, b1 such that
a = a21 and b = b21. Clearly a1 and b1 have to be relatively prime as well.
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In order to do that, we need to show that gcd

(
z − x

2
,
z + x

2

)
= 1. Assume that p is a

prime that divides both of them. Then p divides both their sum and their difference, that is
it has to divide both x and z. That would imply that p divides y as well, and this contradicts
the fact that (x, y, z) = 1.

Hence the gcd of the two fractions is indeed 1 and there must exist positive integers u
and v with (u, v) = 1 such that

z − x

2
= v2 and

z + x

2
= u2.

This leads to 
x = u2 − v2

y = 2uv

z = u2 + v2.

Note that since x and z are odd, we must also have u 6≡ v (mod 2). Also, x > 0 implies
u > v.

In short, we proved that all positive Pythagorean triples are of the form
x = d(u2 − v2)

y = 2duv

z = d(u2 + v2)

where u, v ∈ Z, u > v > 0 and u 6≡ v (mod 2).

2 More descent

We want to study the Fermat equation for n = 4,

x4 + y4 = z4. (2)

Fermat himself proved that it has no non-trivial solutions (i.e. no integer solutions with
xyz 6= 0). His proof uses again the method of descent.

Assume that x, y, z are positive integers satisfying (2). Set d = (x, y, z). Then x = dx1,
y = dy1 and z = dz1 where (x1, y1, z1) = 1 and x1, y1, z1 are also positive integers satisfying
the same equation (2). In particular, x2

1, y
2
1, t1 = z21 is a relatively prime Pythagorean triple.

In particular, x1, y1, t1 are relatively prime positive integers that form a solution to the
equation

X4 + Y 4 = T 2. (3)

Note that x1 and y1 are interchangeable, so we can assume without loss of generality that
x1 is odd and y1 is even. It follows from our study of Pythagorean triples (Section 1) there
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exist integers u > v > 0 such that (u, v) = 1 and u 6≡ v (mod 2) such that
x2
1 = u2 − v2

y21 = 2uv

t1 = u2 + v2.

.

Since x1 is odd, we have x2
1 ≡ 1 (mod 4) and therefore u is odd and v is even.

Note that this implies further that (u, 2v) = 1. Since u(2v) = y21 and 2v is even, we have
u = t22 and 2v = 4d2 for some positive relatively prime integers t2 and d, with t2 odd.

We can rewrite the formula for x1 as

x2
1 + v2 = u2.

Since (u, v) = 1 it follows that x1, v, u is a relatively prime Pythagorean triple with x1 odd
and v even. Applying again the results from Section 1, there exist integers a > b > 0 such
that (a, b) = 1, a 6≡ b (mod 2) and 

x1 = a2 − b2

v = 2ab

u = a2 + b2.

.

Since v = 2ab and 2v = 4d2 it follows that ab = d2. But (a, b) = 1 and therefore
a = x2

2, b = y22 for some integers x2 > y2 > 0 with (x2, y2) = 1 and x2 6≡ y2 (mod 2).
To recap, we have

u = a2 + b2

a = x2
2

b = y22
u = t22.

Therefore x2, y2, t2 are relatively prime positive integers that satisfy

x4
2 + y42 = t22.

But we also have
t2 ≤ t42 = u2 < u2 + v2 = t1.

We proved that if we start with a relatively prime positive solution (x1, y1, t1) to (3) we
can produce another relatively prime solution (x2, y2, t2) with 0 < t2 < t1. Applying this fact
over and over again we obtain infinitely many positive solutions (xn, yn, tn) to (3) with

0 < . . . < tn < tn−1 < . . . < t1.

This is impossible because there are only finitely many integers between 0 and t1. (In fact,
there are t1 − 1 of them!)

In short, the assumption that we can find a positive solution to (2) led to a contradiction,
and that proves that no such solution can exist.
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