HOMEWORK 4

DUE 1 MAY 2013

1. Let G be a group and H be a normal subgroup of G. Prove the universality property of the quotient group G/H:

If $f: G \to G'$ is a group homomorphism such that $H \subset \ker f$, there exists a unique group homomorphism $\overline{f}: G/H \to G'$ such that $\overline{f} \circ p = f$ where $p: G \to G/H$ is the canonical projection.

- **2.** Formulate and prove the universality property for the quotient ring. Attention! The initial ring has no reason to be commutative.
- **3.** Formulate and prove the universality property for the ring of polynomials R[X] over a commutative ring R.
- **4.** Let L/K be a finite Galois extension. For each automorphism σ of L, consider the natural extension $(\cdot)^{\sigma} : L[X] \to L[X]$ given by $(a_n X^n + \cdots + a_0)^{\sigma} = \sigma(a_n) X^n + \cdots + \sigma(a_0)$.
 - (a) Show that $(\cdot)^{\sigma} : L[X] \to L[X]$ is a ring automorphism that extends the original field automorphism $\sigma : L \to L$.
 - (b) Let $f \in L[X]$. Show that $f \in K[X] \iff f^{\sigma} = f$ for all $\sigma \in \operatorname{Gal}(L/K)$.
- (a) Give the definition of an action of a group G on a set X.
 (b) Define the orbit and stabilizer of an element x ∈ X with respect to the action of G.
- **6.** Let

$$G = \operatorname{SL}(2, \mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{Z}, ad - bc = 1 \right\}$$

and $\mathcal{H} = \{z \in \mathbb{C}; \operatorname{Im}(z) > 0\}$ the complex upper half-plane.

(a) Show that G is a group. (b) If $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ and $z \in \mathbb{C}$ show that $\operatorname{Im} \left(\frac{az+b}{cz+d} \right) = \frac{\operatorname{Im}(z)}{|cz+d|^2}.$ (c) Show that $\frac{az+b}{cz+d} \in \mathcal{H}$ for all $z \in \mathcal{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G.$

$$G \times \mathcal{H} \to \mathcal{H}, (\gamma, z) \to \gamma \cdot z = \frac{az+b}{cz+d}, \text{ where } \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a group action.

(e) Find the stabilizer of i with respect to this group action.