QUIZ 1 SOLUTIONS

27 January 2012

1. (a) Show that if $x^{5}+y^{5}+z^{5}=0$, then

$$
2(x+y+z)^{5}=5(x+y)(x+z)(y+z)\left[(x+y+z)^{2}+x^{2}+y^{2}+z^{2}\right]
$$

Use this to show that 5 divides one of the numbers x, y, z.
(b) Show that Fermat's equation

$$
x^{5}+y^{5}=w^{5}
$$

has no solution when 5 does not divide any of the numbers x, y, w.

Solution: (a) This is an exercise in symmetric polynomials. We will make use the binomial formula

$$
\begin{equation*}
(a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5} \tag{1}
\end{equation*}
$$

and the fact that

$$
\begin{equation*}
a^{5} \pm b^{5}=(a \pm b)\left(a^{4} \mp a^{3} b+a^{2} b^{2} \mp a b^{3}+b^{4}\right) . \tag{2}
\end{equation*}
$$

This last equation tells us that

$$
\begin{equation*}
a \pm b \mid a^{5} \pm b^{5} \text { as polynomials in } a, b \tag{3}
\end{equation*}
$$

Since we know that $x^{5}+y^{5}+z^{5}=0$, we see that

$$
2(x+y+z)^{5}=2\left[(x+y+z)^{5}-\left(x^{5}+y^{5}+z^{5}\right)\right]
$$

We can group together fifth powers to see that the RHS is divisible by $x+y$. Namely, (3) implies that $(x+y)=(x+y+z-z) \mid\left[(x+y+z)^{5}-z^{5}\right]$ and $(x+y) \mid\left(x^{5}+y^{5}\right)$. So $x+y$ divides their sum, and therefore the RHS.
However a similar argument shows that $x+z$ and $y+z$ divide the RHS. Or if you prefer, since the RHS is symmetric in x, y, z and divisible by $x+y$, it has to be divisible by $x+z$ and $y+z$ as well.

Thus,

$$
2\left[(x+y+z)^{5}-\left(x^{5}+y^{5}+z^{5}\right)\right]=(x+y)(x+z)(y+z) P(x, y, z)
$$

where $P(x, y, z)$ is some polynomial in x, y, z. We can say more about this polynomial P. It has to again be symmetric in x, y, z. And it has have degree 2 since the degree of LHS is 5 and the degree of the product $(x+y)(x+z)(y+z)$ is 3 . That means that P is of the form

$$
P(x, y, z)=A\left(x^{2}+y^{2}+z^{2}\right)+B(x y+y z+z x) .
$$

All we have to do is determine A and B. To that end, we are going to compare the coefficients of $x^{4} y$ and $x^{3} y^{2}$ on both sides of the equation

$$
2(x+y+z)^{5}=\left(x^{2} y+x y^{2}+y^{2} z+y z^{2}+x^{2} z+x z^{2}\right)\left[A\left(x^{2}+y^{2}+z^{2}\right)+B(x y+y z+z x)\right]
$$

We use (1) to expand LHS as

$$
2(x+y+z)^{5}=2[(x+y)+z]^{5}
$$

Both terms we are interested in do not contain z, so they can only come from $2(x+y)^{5}$. The coefficient of $x^{4} y$ is, according to (1), equal to $2 \cdot 5=10$. On the RHS, the only way we can get $x^{4} y$ is by multiplying $x^{2} y$ from the first factor by the x^{2} term from the second factor.

As for the term $x^{3} y^{2}$, on the LHS the coefficient is $2 \cdot 10=20$, cf. (1). On the RHS, we get it by multiplying $x^{2} y$ from the first factor by the $x y$ term in the second factor; and by multiplying $x y^{2}$ from the first factor by the x^{2} term in the second factor. The coefficient is therefore $A+B$. To summarize, we have

	LHS	RHS
$x^{4} y$	10	A
$x^{3} y^{2}$	20	$A+B$

Hence

$$
P(x, y, z)=10\left(x^{2}+y^{2}+z^{2}\right)+10(x y+y z+x z)=5(x+y+z)^{2}+5\left(x^{2}+y^{2}+z^{2}\right)
$$

This proves the desired relation.
The RHS of our relation is divisible by 5 , so $5 \mid(x+y+z)$. But that implies that $5^{5} \mid(x+y+z)^{5}$ and therefore

$$
5^{4} \mid(x+y)(x+z)(y+z)\left[(x+y+z)^{2}+x^{2}+y^{2}+z^{2}\right] .
$$

Assume that 5 does not divide any of the x, y, z. Then $5 \nmid(x+y)(x+z)(y+z)$. So

$$
5 \mid(x+y+z)^{2}+x^{2}+y^{2}+z^{2} .
$$

We already know that $5 \mid(x+y+z)$, so 5 must also divide $x^{2}+y^{2}+z^{2}$. Since $x+y+z \equiv 0(\bmod 5)$ and $x, y, z \not \equiv 0(\bmod 5)$, the only possibilities for $(x, y, z)(\bmod 5)$ are $(1,1,3)$ or $(1,2,2)$ and their permutations. But that means that $\left(x^{2}, y^{2}, z^{2}\right)(\bmod 5)$ is either $(1,1,4)$ or $(1,4,4)$ or some permutation thereof. In either case $\left(x^{2}+y^{2}+z^{2}\right) \not \equiv 0(\bmod 5)$, and we get our contradiction.
(b) For this part, if $x^{5}+y^{5}=w^{5}$, then $x^{5}+y^{5}+(-w)^{5}=0$. Part (a) implies that 5 must divide one of the three numbers involved, x, y or $-w$. So 5 must divide x, y or w. Hence there are no solutions to Fermat's equation that have all three numbers not divisible by 5 .
2. Find all positive integer solutions to the equation

$$
x^{2}+2 y^{2}=w^{2} .
$$

Solution: Let $d=(x, y, z)$. Then $x=d a, y=d b, w=d c$ where $(a, b, c)=1$ and they satisfy the equation

$$
a^{2}+2 b^{2}=c^{2}
$$

Reducing both sides $(\bmod 2)$ we see that $a^{2} \equiv c^{2}(\bmod 2)$, so a and c must have the same parity. But then $2 \mid(a+c)$ and $2 \mid(a-c)$. Hence $4 \mid(c+a)(c-a)=2 b^{2}$ and so $2 \mid b$. This, in turn, implies that $8 \mid c^{2}-a^{2}=(c-a)(c+a)$. Hence $4 \mid(c-a)$ or $4 \mid(c+a)$.

Case $14 \mid c-a$ We still have $2 \mid(c+a)$ and dividing by 8 our equation we see that

$$
\left(\frac{b}{2}\right)^{2}=\frac{c-a}{4} \frac{c+a}{2}
$$

Each factor on the RHS is an integer. I would like to say that each of them is a square, but for that I need to first show that they are relatively prime. Let $m=\operatorname{gcd}\left(\frac{c-a}{4}, \frac{c+a}{2}\right)$. Then

$$
m \left\lvert\, 2 \frac{c-a}{4}+\frac{c+a}{2}=c\right.
$$

and

$$
m \left\lvert\,-2 \frac{c-a}{4}+\frac{c+a}{2}=a .\right.
$$

If m is divisible by 2 , it means that both a and c are even. We also know that b is even, and this cannot happen since $(a, b, c)=1$. If m is divisible by some odd prime p, then $p \mid a$ and $p \mid c$. But then $p \mid 2 b^{2}$ and so p must also divide b, contradicting again the fact that $(a, b, c)=1$. Hence $m=1$ and now we can deduce that $c-a=4 u^{2}$ and $c+a=2 v^{2}$ for some positive integers $(u, v)=1$. We obtain

$$
\left\{\begin{array}{l}
a=v^{2}-2 u^{2} \\
b=2 u v \\
c=v^{2}+2 u^{2}
\end{array}\right.
$$

Since a and c are odd, v must be odd.
Case $24 \mid c+a$ The same argument applies to $\frac{c+a}{4}$ and $\frac{c-a}{2}$. We get that $c+a=4 u^{2}$ and $c-a=2 v^{2}$ for some positive integers $(u, v)=1$ and v odd. In consequence,

$$
\left\{\begin{array}{l}
a=2 u^{2}-v^{2} \\
b=2 u v \\
c=v^{2}+2 u^{2}
\end{array}\right.
$$

Combining the two cases, we can say that

$$
\left\{\begin{array}{l}
x=d a=d\left|v^{2}-2 u^{2}\right| \\
y=d b=2 d u v \\
z=d c=d\left(v^{2}+2 u^{2}\right)
\end{array}\right.
$$

with u, v, d positive integers.
Note: If we want to be complete and make sure we only get each solution once, we have to make sure that $\left(2 u^{2}-v^{2}, 2 u v, 2 u^{2}+v^{2}\right)=1$ whenever $(u, v)=1$ and v is odd. (This was not part of what the problem asked).
If $p \mid\left(2 u^{2}-v^{2}, 2 u v, 2 u^{2}+v^{2}\right)$, then $p \mid 4 u^{2}$ and $p \mid 2 v^{2}$. Since $(u, v)=1$ we can only have $p=2$. But that would mean that $2 \mid 2 u^{2}-v^{2}$, so $2 \mid v$ (contradiction). Thus $\left(2 u^{2}-v^{2}, 2 u v, 2 u^{2}+v^{2}\right)=1$.

