MIDTERM SOLUTIONS

Chris Briggs

1. Compute the continued fraction of the following numbers:
(a) $\left(5\right.$ points) $\frac{1+\sqrt{5}}{2}$;
(b) (5 points) $\sqrt{5}$.

Solution: a)

$\frac{1+\sqrt{5}}{2}=\frac{-1+\sqrt{5}}{2}+1 . a_{0}=1$
$\frac{2}{-1+\sqrt{5}}=\frac{2(-1+\sqrt{5})}{4}=\frac{1+\sqrt{5}}{2} \cdot a_{1}=1$, and
$\frac{1+\sqrt{5}}{2}$ has been repeated. So
$\frac{1+\sqrt{5}}{2}=[\overline{1}]$.
b)
$\sqrt{5}=-2+\sqrt{5}+2 . a_{0}=2$.
$\frac{1}{-2+\sqrt{5}}=\frac{2+\sqrt{5}}{1}=-2+\sqrt{5}+4 . a_{1}=4$, and
$-2+\sqrt{5}$ has been repeated. So
$\sqrt{5}=[2, \overline{4}]$.
2. Represent as real numbers the following continued fractions.
(a) (5 points) $[1, \overline{3}]$;
(b) (5 points) $[1,2,3]$;
(c) (5 points) $[1,2, \overline{3}]$.

Solution: a)

Let $x=[1, \overline{3}], y=[\overline{3}] . x=1+\frac{1}{y}$ and $y=3+\frac{1}{y}$,
so $x-y=2$. By a computation, $y^{2}-3 y-1=0$ so $y=\frac{3+\sqrt{13}}{2}$,
and then $x=\frac{-1+\sqrt{13}}{2}$.
b)
$[1,2,3]=1+\frac{1}{2+\frac{1}{3}}=\frac{10}{3}$.
c)
$z=[1,2, \overline{3}]=1+\frac{1}{2+\frac{1}{y}}$, where y is as in $2(\mathrm{a})$.
So $z=1+\frac{1}{2+\frac{1}{y}}=1+\frac{1}{2+\frac{1}{\frac{3+\sqrt{13}}{2}}}=1+\frac{1}{2+\frac{2}{3+\sqrt{13}}}=1+\frac{1}{\frac{8+2 \sqrt{13}}{3+\sqrt{13}}}=1+\frac{3+\sqrt{13}}{8+\sqrt{2} 13}=\frac{11+3 \sqrt{13}}{8+2 \sqrt{13}}=\frac{5+\sqrt{13}}{6}$
3. (25 points) Prove that if p is an odd prime, then every reduced residue system modulo p contains exactly $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic nonresidues.

Solution:

Suppose S is the reduced system of residues $(\bmod p): S=\{1,2, \ldots, p-1\}$. We're interested in what conditions on x, y in S will cause them to have the same squares $(\bmod p)$. So choose $p-1>x>y>0$, and suppose $x^{2} \equiv y^{2}(\bmod p)$. Then $p \mid(x+y)(x-y)$, and by hypothesis on $x, y, 0<x-y<p$, hence $p \mid x+y$. But $x, y<p$ so $0<x+y<2 p$, hence $x+y=p$. Conversely, if $x+y=p$ then $x^{2} \equiv y^{2}(\bmod p)$. So two elements of S have the same quadratic residue $(\bmod p)$ precisely when their sum is p. There are $|S| / 2=\frac{p-1}{2}$ such pairs.
4. (a) (10 points) Find the smallest positive integer solution, or prove that no such solution exist, to

$$
x^{2}-5 y^{2}=-1
$$

(b) (10 points) Find the smallest positive integer solution, or prove that no such solution exist, to

$$
x^{2}-5 y^{2}=1
$$

(c) (20 points) Find all the positive integer solutions, or prove that no such solutions exist, to

$$
x^{2}-5 y^{2}=1
$$

Hint: $(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$.
(d) (10 points) Find all integer solutions to $x^{2}-5 y^{2}=1$.

Solution:

a)

By calculation, $x=1, y=1$ fails, and $x=2, y=1$ works. So $(2,1)$ is the smallest solution. A systematic approach would use the convergents of $\sqrt{5}$, the first of which is $\frac{2}{1}$.
b)

The smallest solution is gotten by squaring $2+1 \sqrt{5}$, where $(2,1)$ is taken from the solution in $4(\mathrm{a})$: $(2+\sqrt{5})^{2}=9+4 \sqrt{5}$, and we assign to x the rational part, to y the coefficient of $\sqrt{5}$. So $(9,4)$ is the smallest positive solution.
c)

All solutions are derived by taking powers of the solution in 4(b). Specifically, solutions are the coefficients of 1 and $\sqrt{5}$ in $(9+4 \sqrt{5})^{n}, n \geq 1$.
$(9+4 \sqrt{5})^{n}=\sum_{k=0}^{n}\binom{n}{k} 9^{n-k}(4 \sqrt{5})^{k}=\sum_{k_{\text {even }}}\binom{n}{k} 9^{n-k}(4 \sqrt{5})^{k}+\sqrt{5} \sum_{k_{\text {odd }}}\binom{n}{k} 9^{n-k} 4^{k} \sqrt{5}^{k-1}$
$=\sum_{k_{\text {even }}}\binom{n}{k} 9^{n-k}(80)^{\frac{k}{2}}+4 \sqrt{5} \sum_{k_{\text {odd }}}\binom{n}{k} 9^{n-k}(80)^{\frac{k-1}{2}}$
So all positive solutions are given by $x_{n}=\sum_{k_{\text {even }}}\binom{n}{k} 9^{n-k}(80)^{\frac{k}{2}}, y_{n}=4 \sum_{k_{\text {odd }}}\binom{n}{k} 9^{n-k}(80)^{\frac{k-1}{2}}$
d)
(a, b) is a solution iff $\left(\epsilon_{1} a, \epsilon_{2} b\right)$ is a solution where $\epsilon_{i} \in\{ \pm 1\}$, so in this way the positive solutions of 4(c) yield all integer solutions that contain no zeros. One must also include the "trivial" solution $x=1, y=0$ which is excluded by the method of $4(\mathrm{c})$.

