HOMEWORK 8

DUE FRIDAY 16 MARCH 2012 IN CLASS

1. Formulate and prove a version of Corollary 9.24 for negative discriminants $D \equiv 1(\bmod 4)$. Hint: by the proof of Proposition $9.22, H$ is the subgroup of squares.
2. Let p be a prime number which is represented by forms $f(x, y)$ and $g(x, y)$ of discriminant D.
(a) Show that $f(x, y)$ and $g(x, y)$ are equivalent.

Hint: use Lemma 9.8 and examine the middle coefficient modulo p.
(b) If $f(x, y)=x^{2}+n y^{2}$ and $g(x, y)$ is reduced, show that $f(x, y)=g(x, y)$.
3. Prove that $p=x^{2}+10 y^{2} \Longleftrightarrow p \equiv 1,9,11,19(\bmod 40)$.
4. Prove that $p=x^{2}+21 y^{2} \Longleftrightarrow p \equiv 1,25,37(\bmod 84)$.

