HOMEWORK 4

DUE 14 FEBRUARY 2012

1. These are two identities used by Euler.
(a) Prove that

$$
\left(x^{2}+n y^{2}\right)\left(s^{2}+n t^{2}\right)=(s x \pm n t y)^{2}+n(t x \mp s y)^{2}
$$

(b) Generalize the above to find an identity of the form

$$
\left(a x^{2}+c y^{2}\right)\left(a s^{2}+c t^{2}\right)=(?)^{2}+a c(?)^{2}
$$

2. Let n be a positive integer. Prove or disprove and salvage if possible the following statement.

Suppose $N=a^{2}+n b^{2}$ for some integers a, b with $(a, b)=1$. Assume that $q=x^{2}+n y^{2}$ is a prime divisor of N. Then there exist integers c, d with $(c, d)=1$ such that $\frac{N}{q}=c^{2}+n d^{2}$.
3. Same as above for $n=3$ and $q=4$. (Hint: you should be able to just adapt your proof from exercise 2.)
4. Extra credit Prove that if an odd prime p divides $a^{2}+3 b^{2}$ for some relatively prime integers a and b, then p itself can be written as $p=x^{2}+3 y^{2}$ with $(x, y)=1$. The argument is more complicated because the descent step fails for $p=2$. Thus, if it fails fro some odd prime p, you have to produce an odd prime $q<p$ for which it also fails. Hint: exercise 3 should help.
5. If p is a prime and $p \equiv 1(\bmod 3)$, prove that there exist integers $(a, b)=1$ such that $p \mid a^{2}+3 b^{2}$.

Note that Exercises 4 and 5 prove that
a prime p can be written as $p=x^{2}+3 y^{2}$ for some integers x, y if and only if $p=3$ or $p \equiv 1(\bmod 3)$.
6. Compute $\left(\frac{a}{5}\right)$ for $-10 \leq a \leq 10$.
7. Compute $\left(\frac{a}{7}\right)$ for $-10 \leq a \leq 10$.
8. Let p be a prime number. Show that for any integers a, n we have

$$
\left(\frac{a+n p}{p}\right)=\left(\frac{a}{p}\right)
$$

9. Let p be an odd prime number. Show that every reduced residue system $(\bmod p)$ contains exactly $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic nonresidues $(\bmod p)$.
