HOMEWORK 4

DUE 14 FEBRUARY 2012

1. These are two identities used by Euler.

(a) Prove that

 $(x^{2} + ny^{2})(s^{2} + nt^{2}) = (sx \pm nty)^{2} + n(tx \mp sy)^{2}.$

(b) Generalize the above to find an identity of the form

$$(ax^{2} + cy^{2})(as^{2} + ct^{2}) = (?)^{2} + ac(?)^{2}.$$

2. Let n be a positive integer. Prove or disprove and salvage if possible the following statement.

Suppose $N = a^2 + nb^2$ for some integers a, b with (a, b) = 1. Assume that $q = x^2 + ny^2$ is a prime divisor of N. Then there exist integers c, d with (c, d) = 1 such that $\frac{N}{a} = c^2 + nd^2$.

- **3.** Same as above for n = 3 and q = 4. (*Hint: you should be able to just adapt your proof from exercise* 2.)
- 4. Extra credit Prove that if an odd prime p divides $a^2 + 3b^2$ for some relatively prime integers a and b, then p itself can be written as $p = x^2 + 3y^2$ with (x, y) = 1. The argument is more complicated because the descent step fails for p = 2. Thus, if it fails fro some odd prime p, you have to produce an *odd* prime q < p for which it also fails. *Hint: exercise* 3 should help.
- 5. If p is a prime and $p \equiv 1 \pmod{3}$, prove that there exist integers (a, b) = 1 such that $p \mid a^2 + 3b^2$.

Note that Exercises 4 and 5 prove that a prime p can be written as $p = x^2 + 3y^2$ for some integers x, y if and only if p = 3 or $p \equiv 1 \pmod{3}$.

- **6.** Compute $\left(\frac{a}{5}\right)$ for $-10 \le a \le 10$.
- 7. Compute $\left(\frac{a}{7}\right)$ for $-10 \le a \le 10$.
- 8. Let p be a prime number. Show that for any integers a, n we have

$$\left(\frac{a+np}{p}\right) = \left(\frac{a}{p}\right).$$

9. Let p be an odd prime number. Show that every reduced residue system (mod p) contains exactly $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic nonresidues (mod p).