HOMEWORK 3

DUE 7 FEBRUARY 2012

1. Let $A = [a_0, a_1, a_2, ...,]$. For each $n \ge 0$ set

$$\frac{p_n}{q_n} = [a_0, a_1, \dots, a_n]$$

where we treat a_0, a_1, \ldots as variables, rather than as specific numbers. That is, you don't have to worry about simplifying a fraction of form $\frac{a_0+a_1}{a_2}$ even though for some choice of numbers a_i the numerator and denominator might have common factors. But $\frac{10a_0a_2+10a_1a_2}{15a_2^2} = \frac{2a_0+2a_1}{3a_2}$. Show that

$$p_0 = a_0,$$
 $p_1 = a_0 a_1 + 1,$ and $p_{n+1} = a_{n+1} p_n + p_{n-1}$ for $n \ge 1;$
 $q_0 = 1,$ $q_1 = a_1,$ and $q_{n+1} = a_{n+1} q_n + q_{n-1}$ for $n \ge 1.$

2. Extra credit Let a_0, a_1, a_2, \ldots be a sequence of real numbers with $a_n \ge 1$ for each $n \ge 0$. Set

$$u_n = [a_0, a_1, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots + \frac{1}{a_n}}}}.$$

Prove that the limit $\lim_{n\to\infty} u_n$ exists. (*Hint:* Use the previous exercise and the result proved in class about the differences of successive convergents to show that u_0, u_1, \ldots is a Cauchy sequence.)

- **3.** Show that a real number A is rational if and only if its continued fraction expansion is finite.
- 4. Find the value of each of the following periodic continued fractions. Express your answer in the form

$$\frac{a+b\sqrt{d}}{c},$$

where a, b, c, d are integers.

- (a) $[\bar{1}] = [1, 1, 1, \ldots]$
- (b) $[\overline{1,2,3}] = [1,2,3,1,2,3,1,2,3,\ldots]$
- (c) $[1,\overline{2,3}] = [1,2,3,2,3,2,3,\ldots]$
- 5. For each of the following numbers find their (periodic) continued fraction. What's the period in each case?
 - (a) $\frac{16 \sqrt{3}}{11}$ (b) $\frac{1 + 2\sqrt{5}}{3}$

(c)
$$\frac{1+\sqrt{5}}{2}$$
.

6. If p is a prime, show that Pell's equation

$$x^2 - py^2 = -1$$

has integer solutions if and only if p = 2 or $p \equiv 1 \pmod{4}$. Hint: Consider a + 1 and a - 1 where (a, b) is a solution to $a^2 - pb^2 = 1$.

- 7. Find the smallest positive integer solution to the following equations or show that no positive integer solutions exist.
 - (a) $x^2 31y^2 = 1$
 - (b) $x^2 30y^2 = -1$
 - (c) $x^2 29y^2 = 1$.