## HOMEWORK 3

DUE 7 FEBRUARY 2012

1. Let $A=\left[a_{0}, a_{1}, a_{2}, \ldots,\right]$. For each $n \geq 0$ set

$$
\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]
$$

where we treat $a_{0}, a_{1}, \ldots$ as variables, rather than as specific numbers. That is, you don't have to worry about simplifying a fraction of form $\frac{a_{0}+a_{1}}{a_{2}}$ even though for some choice of numbers $a_{i}$ the numerator and denominator might have common factors. But $\frac{10 a_{0} a_{2}+10 a_{1} a_{2}}{15 a_{2}^{2}}=\frac{2 a_{0}+2 a_{1}}{3 a_{2}}$. Show that

$$
\begin{array}{llll}
p_{0}=a_{0}, & p_{1}=a_{0} a_{1}+1, & \text { and } & p_{n+1}=a_{n+1} p_{n}+p_{n-1} \text { for } n \geq 1 ; \\
q_{0}=1, & q_{1}=a_{1}, & \text { and } \quad q_{n+1}=a_{n+1} q_{n}+q_{n-1} \text { for } n \geq 1 .
\end{array}
$$

2. Extra credit Let $a_{0}, a_{1}, a_{2}, \ldots$ be a sequence of real numbers with $a_{n} \geq 1$ for each $n \geq 0$. Set

$$
u_{n}=\left[a_{0}, a_{1}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots++\frac{1}{a_{n}}}}} .
$$

Prove that the limit $\lim _{n \rightarrow \infty} u_{n}$ exists. (Hint: Use the previous exercise and the result proved in class about the differences of successive convergents to show that $u_{0}, u_{1}, \ldots$ is a Cauchy sequence.)
3. Show that a real number $A$ is rational if and only if its continued fraction expansion is finite.
4. Find the value of each of the following periodic continued fractions. Express your answer in the form

$$
\frac{a+b \sqrt{d}}{c},
$$

where $a, b, c, d$ are integers.
(a) $[\overline{1}]=[1,1,1, \ldots]$
(b) $[\overline{1,2,3}]=[1,2,3,1,2,3,1,2,3, \ldots]$
(c) $[1, \overline{2,3}]=[1,2,3,2,3,2,3, \ldots]$
5. For each of the following numbers find their (periodic) continued fraction. What's the period in each case?
(a) $\frac{16-\sqrt{3}}{11}$
(b) $\frac{1+2 \sqrt{5}}{3}$
(c) $\frac{1+\sqrt{5}}{2}$.
6. If $p$ is a prime, show that Pell's equation

$$
x^{2}-p y^{2}=-1
$$

has integer solutions if and only if $p=2$ or $p \equiv 1(\bmod 4)$.
Hint: Consider $a+1$ and $a-1$ where $(a, b)$ is a solution to $a^{2}-p b^{2}=1$.
7. Find the smallest positive integer solution to the following equations or show that no positive integer solutions exist.
(a) $x^{2}-31 y^{2}=1$
(b) $x^{2}-30 y^{2}=-1$
(c) $x^{2}-29 y^{2}=1$.

