HOMEWORK 2

DUE 31 JANUARY 2012

1. Suppose $d=a^{2}$ is a perfect square. Find all the integer solutions of the Fermat-Pell equation

$$
x^{2}-d y^{2}=1 .
$$

2. The number

$$
\gamma=\frac{1+\sqrt{5}}{2}
$$

is called the golden ratio. For each $0 \leq y \leq 20$ find the integer x making $|x-y \gamma|$ as small as possible. Which rational number x / y with $1 \leq y \leq 20$ most closely approximates γ ? Feel free to use a computer or calculator.
3. Find a solution to

$$
x^{2}-41 y^{2}=-1
$$

in positive integers by plugging in $y=1,2, \ldots$ (you won't have to go very far). Use your answer to find a solution to

$$
x^{2}-41 y^{2}=1 .
$$

4. Find a solution to

$$
x^{2}-11 y^{2}=1 .
$$

For each of the following equations, either find a solution (x, y) in positive integers or explain why no such solution can exist.
5. $x^{2}-11 y^{2}=7$.
6. $x^{2}-11 y^{2}=433$.
7. $x^{2}-11 y^{2}=3$.

