PRACTICE PROBLEMS

DISCLAIMER: The actual exam questions may have nothing to do with the ones below.

- 1. Find all the integer solutions to the following diophantine equations or show that no such solutions exist.
 - (a) $x^2 + 9 = y^4$;
 - (b) $x^2 7y^2 = 3z^2;$
 - (c) $x^2 + 11y^2 = z^2$;
 - (d) $x^4 + y^4 = z^4$.
- 2. Compute the continued fraction of the following numbers.
 - (a) $\frac{1\pm\sqrt{5}}{2}$
 - (b) $\sqrt{15}$
- 3. Represent as $\frac{r+s\sqrt{d}}{t}$ the following continued fractions.
 - (a) $[-2, \bar{4}]$
 - (b) $[1, 3, \overline{4, 5}]$
- 4. (a) Find all integer solutions, or prove that no such solutions exist, to x² 5y² = -1.
 (b) Find all integer solutions, or prove that no such solutions exist, to x² 5y² = 1.
- 5. Compute the following Legendre symbols or explain why they do not make sense.

$$\left(\frac{-300}{11}\right) \quad \left(\frac{11}{300}\right) \quad \left(\frac{229}{13}\right) \quad \left(\frac{231}{91}\right)$$

- 6. Use the homomorphism χ_D and the results of Section 9 in the notes to formulate and prove the results equivalent to (9.7) on page 55 of the notes for the following discriminants.
 - (a) D = -31
 - (b) D = -52.