PRACTICE PROBLEMS

DISCLAIMER: The actual exam questions may have nothing to do with the ones below.

1. Find all the integer solutions to the following diophantine equations or show that no such solutions exist.
(a) $x^{2}+9=y^{4}$;
(b) $x^{2}-7 y^{2}=3 z^{2}$;
(c) $x^{2}+11 y^{2}=z^{2}$;
(d) $x^{4}+y^{4}=z^{4}$.
2. Compute the continued fraction of the following numbers.
(a) $\frac{1 \pm \sqrt{5}}{2}$
(b) $\sqrt{15}$
3. Represent as $\frac{r+s \sqrt{d}}{t}$ the following continued fractions.
(a) $[-2, \overline{4}]$
(b) $[1,3, \overline{4,5}]$
4. (a) Find all integer solutions, or prove that no such solutions exist, to $x^{2}-5 y^{2}=-1$.
(b) Find all integer solutions, or prove that no such solutions exist, to $x^{2}-5 y^{2}=1$.
5. Compute the following Legendre symbols or explain why they do not make sense.

$$
\left(\frac{-300}{11}\right) \quad\left(\frac{11}{300}\right) \quad\left(\frac{229}{13}\right) \quad\left(\frac{231}{91}\right)
$$

6. Use the homomorphism χ_{D} and the results of Section 9 in the notes to formulate and prove the results equivalent to (9.7) on page 55 of the notes for the following discriminants.
(a) $D=-31$
(b) $D=-52$.
