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1 Review

1.1 Prime numbers

A prime number p has the following properties:

• p has no other divisors than 1 and p;

• p | ab =⇒ p | a or p | b.

There are infinitely many primes. Every positive integer can be written uniquely as a
product of primes.

1.2 Euclidean algorithm

The algorithm is used to find the greatest common divisor d = (a, b) of two positive integers
a and b. It also can be used to find integers r, s such that

d = ar + bs.

1.3 Multiplicative functions

A function f : Z → C is multiplicative if f(mn) = f(m)f(n) whenever (m, n) = 1. It is
completely multiplicative if f(mn) = f(m)f(n) for all integers m, n regardless of their gcd.

Fact: If f is a multiplicative function than so is g : Z → C defined by

g(n) =
∑
d|n

f(d).

Examples of multiplicative, but not completely multiplicative functions:

• d(n) = the number of divisors of n (divisor function)

• σ(n) = the sum of the divisors of n

• φ(n) = the number of positive integers < n and relatively prime to n (Euler’s φ
function)

Assume that we know that f(n) is a multiplicative function. Then in order to be able to
evaluate it at any positive integer, it is enough to know its value at prime powers. That is
because

f(pa1
1 . . . par

r ) = f(pa1
1 ) . . . f(par

r )

for any distinct primes p1, . . . , pr. We can take advantage of this feature to deduce formulas
for various multiplicative functions. For instance, for n = pa1

1 . . . par
r ,
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• d(n) = (a1 + 1) . . . (ar + 1)

• σ(n) =
pa1

1 − 1

p1 − 1
. . .

par
r − 1

pr − 1

• φ(n) = pa1−1
1 (p1 − 1) . . . par−1

r (pr − 1) = n

(
1− 1

p1

)
. . .

(
1− 1

pr

)
.

1.4 Linear diophantine equations

These are equations of the form

a1x1 + . . . + akxk = c

with integer coefficients and for which we want to find integer solutions. We know that such
solutions exist if and only if the gcd of the coefficients a1, . . . , an divides c.

1.5 Congruences

Definition. We say that two integers a and b are congruent modulo some integer n and
write a ≡ b (mod n) if n | a − b. (That is to say, a and b give the same remainder when
divided by n.)

Here a few properties of congruences:

• a ≡ a (mod n)

• a ≡ b (mod n) ⇐⇒ b ≡ a (mod n)

• a ≡ b (mod n) and b ≡ c (mod n) =⇒ a ≡ c (mod n)

• a ≡ b (mod n) and c ≡ d (mod n) =⇒ a± c ≡ b± d (mod n), ac ≡ bd (mod n).

• (a, n) = d and ab ≡ ac (mod n) =⇒ b ≡ c (mod n
d
).

• Given integers a and n, the equation ax ≡ b (mod n) has solutions if (a, n) | b. There-
fore it has solutions for all b iff (a, n) = 1. That is to say, if there exists an integer c
such that ac ≡ 1 (mod n). If such a c exists, it is unique modulo n, and the solution
is x = bc (mod n) is also unique modulo n.

• aφ(n) ≡ 1 (mod n).
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In addition to all these similarities to normal arithmetic operations (addition, subtraction,
multiplication, division), there are similarities to linear algebra as well. For instance, the
system of linear congruences

a11x1 + . . . + a1rxr ≡ b1 (mod n)
...

ar1x1 + . . . + arrxr ≡ br (mod n)

has unique solution (mod n) iff det(aij) and n are coprime.

Theorem 1.1 (Chinese Remainder Theorem). Assume that m1, . . . ,mr are positive integer
with the property that any two of them are relatively prime. Then, for any a1, . . . , ar ∈ Z,
the system of equations 

x ≡ a1 (mod m1)
...

x ≡ ar (mod mr)

has a unique solution (mod m1 . . . mr).

2 Primes as sums of squares

Our goal in the next couple of lectures is to prove the following result formulated by Fermat.

Theorem 2.1. A prime p can be written as the sum of two squares if and only if p = 2 or
p ≡ 1 (mod 4).

Proof. One of the direction is easy. Assume p = a2 + b2. Since a2 and b2 are each either
congruent to 0 or 1 modulo 4, it follows that p ≡ 0, 1 or 2 (mod 4). But let’s not forget that
p is a prime, so it cannot possible be divisible by 4, and the only way it can be ≡ 2 (mod 4)
is for it to equal 2.

The other direction is much harder. It’s clear to do when p = 2, but we also have to
show that any prime p ≡ 1 (mod 4) can be written as the sum of two squares. For that, we
will follow Euler’s proof. It might not be the shortest proof one can write down, but it has
the advantage that it illustrates the concept of descent (which was the idea Fermat used in
his sketch of the proof) and reciprocity that we will encounter again later in the course.

Reciprocity step: A prime p ≡ 1 (mod 4), then it divides N = a2 + b2 with a and b
relatively prime integers.

Descent step: If a prime p divides a number N of the form N = a2+b2, where (a, b) = 1,
then p itself can be written as p = x2 + y2 for some (x, y) = 1.

Clearly the these two claims imply our result.

We are going to deviate from the historical order and prove first the reciprocity step.
(Euler first found the proof for the descent step.)
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2.1 Reciprocity step

The reciprocity step follows immediately from the following result.

Lemma 2.2. The equation
x2 ≡ −1 (mod p)

has solutions ⇐⇒ p = 2 or p ≡ 1 (mod 4).

Proof. If p = 2, then x = 1 is a solution.

If p ≡ 1 (mod 4), then 4 | p − 1 = φ(p) and therefore there exists an integer a with
ordp a = 4. This means that a4 ≡ 1 (mod p) and a, a2, a3 6≡ 1 (mod 4). We have

a4 − 1 = (a2 − 1)(a2 + 1) ≡ 0 (mod p).

But a2 − 1 6≡ 0 (mod p), hence a2 ≡ −1 (mod p), and x = a is a solution of our
equation.

If p ≡ 3 (mod 4), assume that x = a is a solution, i.e. a2 ≡ −1 (mod p). Then a4 ≡ 1 (mod p),
so ordp a | 4. But we also know that ordp a | φ(p) = p− 1. Hence ordp a | (p− 1, 4) = 2,
which means that a2 ≡ 1 (mod p). The upshot is that 1 ≡ −1 (mod p), so p | 2. The
only way this will happen is for p = 2, and we reached a contradiction.

2.2 Descent step

Fermat’s idea (which he used on a number of other occasions), formalized in this case by
Euler in this case, is to show that if we have a solution to a diophantine equation, then we
can find a “smaller” (in some sense) solution. Iterating this process means that we can find
smaller and smaller positive integers. Hence the process needs to terminate at some point,
or we reach a contradiction.

Lemma 2.3. If N is an integer of the form N = a2+b2 for some (a, b) = 1 and q = x2+y2 is
a prime divisor of N, then there exist relatively prime integers c and d such that N/q = c2+d2.

Proof. First note that since q has no trivial divisors, x and y are forced to be relatively
prime. We have

x2N − a2q = x2(a2 + b2)− a2(x2 + y2) = x2b2 − a2y2 = (xb− ay)(xb + ay).

Since q | N, it follows that x2N − a2q ≡ 0 (mod q), and so

(xb− ay)(xb + ay) ≡ 0 (mod q).

Since q is a prime, this can happen only if one of the factors is divisible by q. Since we
can change the sign of a without affecting our theorem, we can assume that q | xb− ay, that
is xb− ay = dq for some integer d.
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We would like to show that x | a+dy. Since (x, y) = 1, this is equivalent to showing that
x | y(a + dy). But

y(a + dy) = ay + dy2 = xb− dq + dy2 = xb− d(x2 + y2) + dy2 = xb− dx2

which is divisible by x. Thus x | a + dy, so there exist an integer c such that a + dy = cx.
Therefore

cxy = (a + dy)y = xb− dx2 = x(b− dx)

and so
cy + dx = b.

Next we see that

N = a2 + b2 = (cx− dy)2 + (cy + dx)2 = (x2 + y2)(c2 + d2) = q(c2 + d2).

Since (a, b) = 1 it follows that (c, d) = 1 and the proof is complete.

And now for the actual descent step, assume that we have an odd prime p (and thus
p > 2) that divides a number M of the form N = a2 + b2 with (a, b) = 1. We want to show
that p ≡ 1 (mod 4).

First, note that we can add or subtract any multiple of p from a or b without changing
the problem. That is, we can find integers a1, b1 with |a1|, |b1| < p/2 such that p|N1 = a2

1+b2
1.

In particular, N1 < p2/2. Denote d = (a1, b1) Then d < p/2, so p - d. We also know that
a1 = da2, b1 = db2 and (a2, b2) = 1. Note that |a2| ≤ |a1| < p/2 and likewise |b2| < p/2.
Therefore N2 = a2

2 + b2
2 < p2/2.

We have
p | a2

1 + b2
1 = d2(a2

2 + b2
2).

Since p is a prime that does not divide d, it follows that p|N2 = a2
2 + b2

2.
So we showed that our prime p has to divide a number M = u2+v2 < p2/2 with (u, v) = 1

and |u|, |v| < p/2. The positive integer m = M/p will have to be m < p/2.

Let q be a prime divisor of m. Clearly q 6= p since q ≤ m < p/2. In particular q < p and
p | M

q
.

Assume that q can be written as the sum of two squares. By Lemma 2.3, we have
M/q = x2 + y2 for some integers (x, y) = 1. But then p | x2 + y2 < u2 + v2 = M.

So if all the prime factors of M different from p can be written as sums of two squares,
then so can p. Since we assumed that this is not the case, it follows that M has some prime
divisor p1 < p that cannot be written as the sum of two squares. By repeating the argument
for p1 it follows that there must exist another prime p2 < p1 that cannot be written as the
sum of two squares. This argument cannot continue indefinitely, so at some point we are
bound to hit the prime number 5 = 22 + 12 which can obviously be written as the sum of
two squares. The descent step is now proven and this completes the proof of Theorem 2.1.
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Note that we implicitly used the fact that if (x, y) = 1 then 3 - x2 + y2. To see this,
recall that for any integer x we have x ≡ 0, 1 or − 1 (mod 3), so x2 ≡ 0 or 1 (mod 3). Since
(x, y) = 1 we cannot have x2 ≡ y2 ≡ 0 (mod 3), so x2 + y2 6≡ 0 (mod 3).

3 Pythagorean triples

We want to find all right triangles with all three sides of integral length. In other words, we
want to solve the diophantine equation

x2 + y2 = z2. (3.1)

Note that any solution generates a positive solution by changing the sign, hence solving
the equation in Z is equivalent to solving it in Z>0, which is the same as finding all right
triangles with integral sides. We can further reduce the problem to finding solutions with
(x, y, z) = 1, that is we exclude similar triangles. Each such solution will generate infinitely
many solutions (dx, dy, dz) with gcd = d and vice versa.

It is worth noticing that if a prime p divides two of the number x, y, z then it would have
to divide the third one as well. Hence we must have (x, y) = (y, z) = (x, z) = 1.
There is one more observation we can make to simply our problem.

Claim x 6≡ y (mod 2).

Proof. We know that we cannot have x ≡ y ≡ 0 (mod 2) because that force x and y to
not be relatively prime. We are going to argue by contradiction for the other case as well.
Assume that x ≡ y ≡ 1 (mod 2). Then x2 ≡ y2 ≡ 1 (mod 4), and this would mean that
z2 ≡ 2 (mod 4), which is impossible.

Since x and y are interchangeable in our problem, we can assume without loss of generality
that x is odd and y is even. This also implies that z is odd. We can rewrite our equation as

y2 = z2 − x2 = (z − x)(z + x)

and further as (y

2

)2

=
z − x

2
· z + x

2
.

All the fractions above are really positive integers since y is even and x, z are both odd with
z > x. Next we want to use the following observation.
Fact If a, b, c ∈ Z with (a, b) = 1 and ab = c2, then there exist integers a1, b1 such that
a = a2

1 and b = b2
1. Clearly a1 and b1 have to be relatively prime as well.

In order to do that, we need to show that gcd

(
z − x

2
,
z + x

2

)
= 1. Assume that p is a

prime that divides both of them. Then p divides both their sum and their difference, that is
it has to divide both x and z. That would imply that p divides y as well, and this contradicts
the fact that (x, y, z) = 1.
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Hence the gcd of the two fractions is indeed 1 and there must exist positive integers u
and v with (u, v) = 1 such that

z − x

2
= v2 and

z + x

2
= u2.

This leads to 
x = u2 − v2

y = 2uv

z = u2 + v2.

Note that since x and z are odd, we must also have u 6≡ v (mod 2). Also, x > 0 implies
u > v.

In short, we proved that all positive Pythagorean triples are of the form
x = d(u2 − v2)

y = 2duv

z = d(u2 + v2)

where u, v ∈ Z, u > v > 0 and u 6≡ v (mod 2).

4 More descent

We want to study the Fermat equation for n = 4,

x4 + y4 = z4. (4.1)

Fermat himself proved that it has no non-trivial solutions (i.e. no integer solutions with
xyz 6= 0). His proof uses again the method of descent.

Assume that x, y, z are positive integers satisfying (4.1). Set d = (x, y, z). Then x = dx1,
y = dy1 and z = dz1 where (x1, y1, z1) = 1 and x1, y1, z1 are also positive integers satisfying
the same equation (4.1). In particular, x2

1, y
2
1, t1 = z2

1 is a relatively prime Pythagorean
triple. In particular, x1, y1, t1 are relatively prime positive integers that form a solution to
the equation

X4 + Y 4 = T 2. (4.2)

Note that x1 and y1 are interchangeable, so we can assume without loss of generality that
x1 is odd and y1 is even. It follows from our study of Pythagorean triples (Section 3) there
exist integers u > v > 0 such that (u, v) = 1 and u 6≡ v (mod 2) such that

x2
1 = u2 − v2

y2
1 = 2uv

t1 = u2 + v2.

.
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Since x1 is odd, we have x2
1 ≡ 1 (mod 4) and therefore u is odd and v is even.

Note that this implies further that (u, 2v) = 1. Since u(2v) = y2
1 and 2v is even, we have

u = t22 and 2v = 4d2 for some positive relatively prime integers t2 and d, with t2 odd.
We can rewrite the formula for x1 as

x2
1 + v2 = u2.

Since (u, v) = 1 it follows that x1, v, u is a relatively prime Pythagorean triple with x1 odd
and v even. Applying again the results from Section 3, there exist integers a > b > 0 such
that (a, b) = 1, a 6≡ b (mod 2) and 

x1 = a2 − b2

v = 2ab

u = a2 + b2.

.

Since v = 2ab and 2v = 4d2 it follows that ab = d2. But (a, b) = 1 and therefore
a = x2

2, b = y2
2 for some integers x2 > y2 > 0 with (x2, y2) = 1 and x2 6≡ y2 (mod 2).

To recap, we have

u = a2 + b2

a = x2
2

b = y2
2

u = t22.

Therefore x2, y2, t2 are relatively prime positive integers that satisfy

x4
2 + y4

2 = t22.

But we also have
t2 ≤ t42 = u2 < u2 + v2 = t1.

We proved that if we start with a relatively prime positive solution (x1, y1, t1) to (4.2) we
can produce another relatively prime solution (x2, y2, t2) with 0 < t2 < t1. Applying this fact
over and over again we obtain infinitely many positive solutions (xn, yn, tn) to (4.2) with

0 < . . . < tn < tn−1 < . . . < t1.

This is impossible because there are only finitely many integers between 0 and t1. (In fact,
there are t1 − 1 of them!)

In short, the assumption that we can find a positive solution to (4.1) led to a contradiction,
and that proves that no such solution can exist.
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5 Diophantine equations and congruences

As we have already seen in some isolated examples, one can try to show that a diophantine
equation does not have solutions by showing that it has no solution modulo some integer n.

Example 1 x2 − 3y2 = −1

Looking at this equation modulo 3, we see that

x2 ≡ −1 (mod 3),

which we know it is impossible since 3 - 1.

Example 2 x2 − 7y2 = −1

This implies that x2 + 1 ≡ 0 (mod 7) and that is impossible since 7 is a prime and
7 ≡ 3 (mod 4).

Example 3 x2 − 15y2 = 2

This implies that x2 ≡ 2 (mod 5). But the only squares modulo 5 are 0, 1, 4.

Example 4 x2 − 5y2 = 3z2

Assume that we have a positive solution with (x, y, z) = d. Then x = dx1, y = dy1, z =
dz1 with (x1, y1, z1) = 1 and

x2
1 − 5y2

1 = 3z2
1 .

In particular, 3 | x2
1 − 5y2

1 and, since obviously 3 | 6y2
1, we get 3 | x2

1 + y2
1. We know

that this is only possible if 3 | x1 and 3 | y1. But then 9 | 3z2
1 and so 3 | z1. This cannot

happen since (x1, y1, z1) = 1.

6 Fermat-Pell equations

We will consider equations of the form

x2 − dy2 = 1 (6.1)

and
x2 − dy2 = −1. (6.2)

We want to figure out for which d they have (non-trivial) integer solutions. If the answer
is affirmative, we want to find a way to write down all solutions.

First a few examples.

Example 1 x2 − 3y2 = −1

Looking at this equation modulo 3, we see that

x2 ≡ −1 (mod 3),

which we know it is impossible since 3 - 1.
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Example 2 x2 − 3y2 = 1

For instance (2, 1) is a solution. In fact, it has infinitely many solutions as we shall see
shortly.

Example 3 x2 − 7y2 = −1

This implies that x2 + 1 ≡ 0 (mod 7) and that is impossible since 7 is a prime and
7 ≡ 3 (mod 4).

Example 4 x2 − py2 = −1

has no solutions when p is a prime p ≡ 3 (mod 4). The argument is the same as in the
previous example.

We start our systematic study by proving the following result.

Theorem 6.1. Let d be a positive integer.

1. If the equation
x2 − dy2 = 1 (6.1)

has one positive solution, then it has infinitely many positive solutions.

2. If the equation
x2 − dy2 = −1 (6.2)

has one positive solution, then both (6.1) and (6.2) have infinitely many positive solu-
tions.

The theorem follows immediately from the following lemma.

Lemma 6.2. Assume that a, b, d ∈ Z>0 and let

c = a2 − db2.

Then for any n ≥ 1 there exist positive integers xn, yn such that

x2
n − dy2

n = cn.

Moreover, we can choose these integers such that {xn}n and {yn}n are two strictly increasing
sequences.

Proof. By induction on n. First, we have to check for n = 1. This is resolved by taking
x1 = a and y1 = b.

Now assume that we found xn, yn. Then

cn+1 = cn·c = (x2
n−dy2

n)(a2−db2) = a2x2
n+d2b2y2

n−d(a2y2
n+b2x2

n) = (axn+dbyn)2−d(ayn+bxn)2.
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Then {
xn+1 = axn + dbyn

yn+1 = ayn + bxn

have the property that
x2

n+1 − dy2
n+1 = cn+1.

It remains to verify that xn+1 > xn and yn+1 > yn. This is so because

xn+1 = axn + dbyn > axn ≥ xn

and
yn+1 = ayn + bxn > ayn ≥ yn.

They are of course positive because xn > x1 = a > 0 and yn > y1 = b > 0 for all n > 1.

Even though we proved that if a solution exists, then infinitely many solutions exits, we
are far from done. We still have to figure out exactly when the Pell equations have solutions
and how to generate all solutions.

For the rest of this section we assume that d > 0 is not a square.

6.1 Diophantine approximation

We want to figure out when these equations have solutions. We will deal first with the
equation (6.1), namely

x2 − dy2 = 1.

Example 1 The smallest positive solution to x2 − 61y2 = 1 is (1766319049, 226153980).

Example 2 The smallest positive solution to x2 − 21y2 = 1 is (55, 12).

Example 3 The smallest positive solution to x2 − 58y2 = 1 is (19603, 2574).

If (x, y) is a positive integer solution to Pell’s equation (6.1), then we must have

(x + y
√

d )(x− y
√

d ) = 1 ⇐⇒ x− y
√

d =
1

x + y
√

d
(6.3)

If x, y are positive integers, the quantity x+ y
√

d will be relatively large. Hence x− y
√

d
must be a small positive real number. So, if we can find x, y positive integers such that
x− y

√
d is as small as possible, then the product (x+ y

√
d )(x− y

√
d ) has to be a relatively

small positive integer. And a small positive integer has a good chance of being equal to 1, or
at least close to it. That chance increases if we can keep the size of our large factor x + y

√
d

under control.
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We start by investigating the question of how small we can make x − y
√

d and we will
follow Dirichlet’s answer to this question.

For any integer y > 0 we can choose x to be the closest integer to y
√

d and this ensures

that
∣∣∣x− y

√
d
∣∣∣ ≤ 1

2
. But we can do much better than that.

Example Take d = 13.

y = 1 x = 4 =⇒
∣∣x− y

√
13

∣∣ ∼ 0.3944

y = 5 x = 18 =⇒
∣∣x− y

√
13

∣∣ ∼ 0.0277

Dirichlet employed a simple, yet very powerful, idea to answer the question of how small∣∣∣x− y
√

d
∣∣∣ can become: the pigeonhole principle. This principle simply says that if there

more pigeons than pigeonholes, then at least one of pigeonholes contains more than one
pigeon.

Theorem 6.3 (Dirichlet’s diophantine approximation theorem). Let α ∈ R>0 \ Q be a
positive irrational number. Then there are infinitely many pairs of positive integers (x, y)
such that

|x− αy| < 1

y
⇐⇒

∣∣∣∣xy − α

∣∣∣∣ <
1

y2
.

Proof. Pick a large integer T > 0. For 0 ≤ t ≤ T write each of the numbers

tα = Nt +Fjt where Nt = bjαc is the floor of jα and Ft ∈ [0, 1) is the fractional part of jα.

Our pigeons are the T + 1 numbers F0, F1, . . . , FT .
Our pigeonholes are the T subintervals of [0, 1) given by

[
t−1
T

, t
T

)
, 1 ≤ t ≤ T.

The pigeonhole principle ensures that there exist

0 ≤ j < k ≤ T such that |Fk − Fj| <
1

T
.

But Fj = jα−Nj and Fk = kα−Nk. Substituting above, we get

|(Nk −Nj)− (k − j)α| < 1

T

Set x = Nk − Nj and y = k − j. Then x, y ∈ Z>0 and |x − yα| <
1

T
. On the other hand,

since 0 ≤ j < k ≤ T it follows that 0 < y = k − j ≤ T.
To recap we have that

0 < y ≤ T (6.4)

and

|x− yα| < 1

T
. (6.5)
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Note that by taking T larger and larger we automatically get new pairs of positive integers
(x, y) that satisfy (6.4) and (6.5). This happens because |x − yα| > 0 (recall that α /∈ Q!).
For any fixed pair of positive integers (x0, y0) we can make T large enough so that (6.5) does
not hold anymore. Therefore we obtain another pair of positive integers (x1, y1) for this new
T.

Continuing the procedure and making T larger and larger yields infinitely many pairs of
positive integers that satisfy (6.4) and (6.5). Note also that (6.4) implies that

1

T
≤ 1

y
,

and our proof is complete.

Going back to Pell’s equation (6.1), we will apply Dirichlet’s theorem to α =
√

d. The fact
that d > 0 is not a square ensures that

√
d /∈ Q. Hence there are infinitely many pairs of

positive integers (x, y) such that |x− y
√

d| < 1/y. We would like the left hand side here to
be equal to |x + y

√
d| since that would yield a solution to Pell’s equation.

Idea: take two pairs (x, y) for which x2 − dy2 gives the same value and “divide” them.
Let’s see on an example what we mean.

Example d = 13
(x1, y1) = (11, 3) =⇒ x2

1 − 13y2
1 = 4

(x1, y1) = (119, 33) =⇒ x2
2 − 13y2

2 = 4

We “divide” by taking the quotient

x2 − y2

√
d

x1 − y1

√
d

=
119− 33

√
13

11− 3
√

13
=

119− 33
√

13

11− 3
√

13
· 11 + 3

√
13

11 + 3
√

13
=

11

2
− 3

2

√
13.

We still don’t have what we want because 11/2 and 3/2 are not integers. Let’s try again
with another pair (x3, y3). Namely,

(x3, y3) = (14159, 3927) =⇒ x2
3 − 13y2

3 = 4.

Then
x3 − y3

√
d

x1 − y1

√
d

=
14159− 3927

√
13

11− 3
√

13
= 649− 180

√
13.

The key point here is that (x1, y1) ≡ (x3, y3) (mod 4), but (x1, y1) 6≡ (x2, y2) (mod 4).

Lemma 6.4. Let d be an integer that is not a perfect square. Set

Fd = {x + y
√

d; x, y ∈ Q} ⊂ C

and
Rd = {m + n

√
d; m, n ∈ Z} ⊂ Fd.
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(i) If x, y ∈ Q, then x + y
√

d = 0 ⇐⇒ x = y = 0.

(ii) Z ⊂ Rd, Q ⊂ Fd.

(iii) z1, z2 ∈ Rd =⇒ z1 ± z2, z1z2 ∈ Rd.

(iv) z1, z2 ∈ Fd =⇒ z1 ± z2, z1z2 ∈ Fd.

(v) z ∈ Fd, z 6= 0 =⇒ 1

z
∈ Fd.

Proof. Exercise.

Lemma 6.5. With the same notation as in Lemma 6.4, if (x + y
√

d)n = A + B
√

d with
x, y, A, B ∈ Z and n ∈ N, then (x− y

√
d)n = A−B

√
d. Same statement for x, y, A, B ∈ Q.

Proof. Induction on n.

Theorem 6.6. Let d be a positive integer that is not a perfect square.

(i) Then Pell’s equation
x2 − y2d = 1

always has positive integer solutions.

(ii) Moreover, let (a1, b1) be the positive integer solution with the smallest a1 and set

z = a1 + b1

√
d.

(Alternatively, we could choose the pair that gives the smallest z > 1.)
Define (ak, bk) to be the positive integers given by the formula

ak + bk

√
d = zk = (a1 + b1

√
d)k ∀k ≥ 1. (6.6)

Then (ak, bk), k ≥ 1, are all the positive integer solutions to Pell’s equation.

Proof. To prove the first part we will employ again the pigeonhole principle. Dirichlet’s
Theorem 6.3 implies that there are infinitely many pairs (x, y) of positive integers such that∣∣∣x− y

√
d
∣∣∣ <

1

y
.

For any such (x, y) we have 0 < x < y
√

d +
1

y
, and so

x + y
√

d < 2
√

d +
1

y
< 3y

√
d.

Therefore ∣∣x2 − y2d
∣∣ =

∣∣∣x− y
√

d
∣∣∣ ∣∣∣x + y

√
d
∣∣∣ <

1

y
· 3y

√
d = 3

√
d. (6.7)

Let T = b3
√

dc. We will apply the pigeonhole principle to
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pigeons: pairs of positive integers (x, y) such that
∣∣∣x− y

√
d
∣∣∣ <

1

y
. There are infinitely many

pigeons (cf. Theorem 6.3).

pigeonholes: integers −T ≤ m ≤ T. There are 2T + 1 pigeonholes.

Since we have infinitely many pigeons and only finitely many pigeonholes, it follows that at
least one pigeonhole must contain infinitely many pigeons. Therefore there exist an integer
M such that |M | < 3

√
d and an infinite sequence (xk, yk) such that

xk < xk+1, yk < yk+1, x2
k − y2

kd = M. (6.8)

We would like to “divide” two such pairs to get a solution to Pell’s equation. But as we’ve
seen in our example, we need to choose our pairs carefully. We do that by employing the
pigeonhole principle again. This time the protagonists are:

pigeons the infinitely many pairs of positive integers (xk, yk);

pigeonholes pairs of integers (A, B) with 0 ≤ A, B ≤ M − 1. There are M2 pigeonholes.

Once again, we have infinitely many pigeons and finitely many pigeonholes. It follows that
there are two different pairs (xk, yk) and (xj, yj) with k < j and

xk ≡ xj (mod M), yk ≡ yj (mod M).

Then, by (6.8),

xj − yj

√
d

xk − yk

√
d

=
xj − yj

√
d

xk − yk

√
d
· xk + yk

√
d

xk + yk

√
d

=
(xjxk − dyjyk) + (xjyk − xkyj)

√
d

M
.

Set

x =
xjxk − dyjyk

M
y =

xjyk − xkyj

M
.

First we see that

x2 − y2d =
(x2

j − y2
j d)(x2

k − y2
kd)

M2
= 1.

Then we use the congruence relations to show that x, y are integers. Indeed,

xjxk − dyjyk ≡ x2
k − dy2

k (mod M) ≡ 0 (mod M)

and
xjyk − xkyj ≡ xkyk − xkyk (mod M) ≡ 0 (mod M).

Changing signs if necessary, we found a nonnegative integers x, y such that x2− y2d = 1.
Clearly this implies that x ≥ 1. We want to show that y 6= 0. We argue by contradiction.

Assume y = 0. Then
xjyk = xkyj
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which implies that
y2

kM = y2
k(x

2
j − dy2

j ) = x2
ky

2
j − dy2

ky
2
j = My2

j .

We obtain yk = yj which is a contradiction. Therefore y > 0 and we found our solution.
Now for the second statement of the theorem. First we should note that z > 1 since

a1, b1 ≥ 1 and that Lemma 6.4 ensures that ak, bk are well defined (i.e. zk can be indeed
written as integer + and integer multiple of

√
d; positivity I leave to you). The same lemma

ensures that we do not have any repeat pairs among the (ak, bk)’s.
We should also note that

z(a1 − b1

√
d) = (a1 + b1

√
d)(a1 − b1

√
d) = a2

1 − db2
1 = 1,

so
1

z
= a1 − b1

√
d.

By Lemma 6.5,
z−k = ak − bk

√
d ∀k ≥ 1.

Thus
a2

k − b2
kd = (ak + bk

√
d)(ak − bk

√
d) = zk · z−k = 1 ∀k ≥ 1,

which is to say (ak, bk) is a solution of the Pell equation (6.1).
And now we have to show that there are no other positive integer solutions. Assume

(u, v) is a positive integer solution. We want to show that there exist a positive integer k
such that (u, v) = (ak, bk).

Let r = u + v
√

d. Then u ≥ a1 > 0 and this implies in turn that v2 = u2−1
d

≥ a2
1−1

d
= b2

1.
Since we are dealing with positive numbers, this implies v ≥ b1, so r ≥ z > 1.

It follows that there exist an integer k ≥ 1 such that zk ≤ r < zk+1. Then 1 ≤ z−kr < z,
which can be rewritten as

1 ≤ (ak − bk

√
d)(u + v

√
d) < z.

Hence
1 ≤ s + t

√
d < z. (6.9)

where
s = aku− bkvd and t = akv − bku.

Moreover,

s2 − t2d = (aku− bkvd)2 − d(akv − bku)2 = (a2
k − db2

k)(u
2 − dv2) = 1 (6.10)

We need to show that s+t
√

d = z−kr
?
= 1. We do that by excluding all other possibilities.

Assume s < 0, t < 0. Then s + t
√

d < 0 which contradicts (6.9).
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Assume s < 0, t ≥ 0. Then −s +
√

d > s + t
√

d ≥ 1 and thus

−1 = −s2 + t2d = (−s + t
√

d)(s + t
√

d) ≥ 1 · 1 (contradiction).

Assume s ≥ 0, t < 0. Then s− t
√

d > s + t
√

d ≥ 1 and thus

1 = s2 − t2d = (s− t
√

d)(s + t
√

d) ≥ s− t
√

d > 1 (contradiction).

Assume s > 0, t > 0. Then s ≥ a1 > 0 since (a1, b1) is the positive integer solution with
the smallest a1. By (6.10) we have

t2 =
s2 − 1

d
≥ a2

1 − 1

d
= b2

1.

Again we are dealing with positive integers, so t ≥ b1 and s + t
√

d ≥ a1 + b1

√
d = z

which contradicts (6.9).

Assume s = 0. Then t2d = −1 which is impossible since d > 0.

The only possibility left is that t = 0. This implies s = 1, hence zk = r.

6.2 Continued fractions

We still want a method for finding that smallest solution to Pell’s equation (6.1). The answer
will be provided in terms of continued fractions (and dates back to the dawn of time, or at
least to VI century India).

Given a real number A one computes its continued fraction expansion as follows.

x0 = A, a0 = bx0c

xi+1 =
1

xi − ai

, ai+1 = bxi+1c ∀i ≥ 0
(6.11)

This formula ensures that xi, ai ≥ 1 for all i ≥ 1.

Definition. We say that

[a0, a1, . . .] = a0 +
1

a1 + 1
a2+...

is the continued fraction of the real number A, where the ai’s are computed according to the
procedure given in (6.11).

Example 6.7.

A =
5

3
= 1 +

2

3
= 1 +

1
3
2

= 1 +
1

1 + 1
2

The continued fraction expansion of 5
3

is [1, 1, 2].
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Example 6.8. A finite continued fraction [a0, a1, . . . , an] with ai ≥ 1 for all 1 ≤ i ≤ n, is
a rational number. Vice versa, if a

b
is a rational number, the procedure (6.11) outlines the

Euclidean algorithm for a and b. Thus the rational fraction of a rational number is finite,
unique, and a

b
is equal to to its continued fraction.

Example 6.9. The continued fraction of
√

2 is [1, 2, 2, 2, 2, . . .].

Definition. Let [a0, a1, . . .] be a continued fraction. The rational number

pn

qn

= [a0, . . . , an] (n ≥ 0)

is called the nth convergent of [a0, a1, . . .].

Example 6.10.

n = 0 :
p0

q0

= [a0] = a0 =⇒ p0 = a0, q0 = 1

n = 1 :
p1

q1

= [a0, a1] = a0 +
1

a1

=
a0a1 + 1

a1

=⇒ p1 = a0a1 + 1, q1 = a1

We can continue this procedure and see that in general

pn+1 = an+1pn + pn−1 for all n ≥ 1, p0 = a0, p1 = a0a1 + 1;

qn+1 = an+1qn + qn−1 for all n ≥ 1, q0 = 1, q1 = a1.
(6.12)

Note that
p1q0 − p0q1 = a0a1 + 1− a0a1 = 1.

Furthermore, (6.12) implies that

pn+1qn − pnqn+1 = (an+1pn + pn−1) qn − pn (an+1qn + qn−1) = pn−1qn − pnqn−1.

It follows by induction that

pn+1qn − pnqn+1 = (−1)n ∀n ≥ 0. (6.13)

In particular, pn, qn are relatively prime for all n and therefore the convergents
pn

qn

are

indeed written in lowest terms with pn, qn computed using the recurrence relations (6.12).

Moreover, if [a0, a1, . . .] is an infinite continued fraction (6.12) implies that the denomina-

tors qn keep growing, while (6.13) tells us that
pn

qn

−pn+1

qn+1

=
(−1)n

qnqn+1

. Therefore the convergents

pn

qn

, n ≥ 0, form a Cauchy sequence. We can now make the following definition.
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Definition. When we write α = [a0, a1, . . .], we mean that α = lim
n→∞

pn

qn

.

Theorem 6.11. If A ∈ R \Q, then the continued fraction expansion of A is infinite and A
is indeed equal to its continued fraction obtained according to (6.11), i.e.

A = lim
n→∞

pn

qn

= [a0, a1, . . .].

Proof. Exercise.

Definition. We say that a continued fraction is purely periodic if it is of the form

[b0, b1, . . . , bm] = [b0, b1, . . . , bm, b0, b1, . . . , bm, b0, b1, . . .].

We say that a continued fraction is periodic if it is of the form

[a0, . . . , ak, b0, b1, . . . , bm] = [a0, . . . , ak, b0, b1, . . . , bm, b0, b1, . . . , bm, b0, b1, . . .].

Examples

•
√

2 = [1, 2̄]

• 3
√

2 = [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, . . .]

• π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, . . .]

• e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .]

Example 6.12. Let A = [a, b̄]. Note that our procedure (6.11) ensures that b ≥ 1. Then

A = a +
1

B
, where B = [ b̄ ] > 1.

On the other hand,

B = b +
1

B
,

so
B2 = bB + 1.

Since B > 0, the quadratic formula tells us that

B =
b +

√
b2 + 4

2
,
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and therefore

A = a +
2

b +
√

b2 + 4
· −b +

√
b2 + 4

−b +
√

b2 + 4
=

2a− b +
√

b2 + 4

2
.

In particular, if b = 2a we get that

[a, 2a, 2a, . . . , 2a, . . .] =
√

a2 + 1.

We have already seen this for a = 1, namely we have seen that
√

2 = [1, 2̄].

Lemma 6.13. If B = [b1, . . . , bm] has a purely periodic continued fraction with, then there
are positive integers x, y, u, v such that

B =
xB + y

uB + v
.

Proof. The key observation here is, as above, that

B = b1 +
1

. . . + 1
bm+ 1

B

.

The rest is just algebraic manipulation.

Theorem 6.14. (i) If the continued fraction expansion of a real number A is periodic,
i.e.

A = [a0, . . . , ak, b0, b1, . . . , bm],

then there exist integers r, s, t, d with d > 0 not a square, s, t 6= 0 such that

A =
r + s

√
d

t
.

(ii) Let d be a positive integer that is not a perfect square and r, s, t ∈ Z, s, t 6= 0. Then the
continued fraction of

A =
r + s

√
d

t
is periodic.

Proof. For the first part, denote B = [b0, b1, . . . , bm]. Lemma 6.13 implies that B satisfies a
quadratic equation

aB2 + bB + c = 0.

Note that the discriminant ∆ = b2−4ac > 0 since B ∈ R\Q. (This is because B is the limit
of a sequence of positive rational numbers, but it cannot be rational itself since its continued
fraction is infinite.) In other words, B is of the form

B =
r′ + s′

√
d

t′
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for some integers r′, s′, t′. In particular B ∈ Fd and since Fd is closed under addition, division
and multiplication, it follows that A ∈ Fd, so A is of the desired form.

The argument for the second part is more complicated. First observe that

A =
p0 +

√
D

q0

for some integers D > 0, p0, q0 and that we can choose them so that q0 | p2
0−D. (In order to

see this, you might want to take advantage of the fact that A is the root of some quadratic
equation with integer coefficients.) The procedure (6.11) for computing the continued frac-
tion of A is the following. Let

x0 = A, a0 = bx0c.

Next, we set

x1 =
1

x0 − bx0c
≥ 1 and a1 = bx1c.

Then at each step we set

xi+1 =
1

xi − bxic
> 1 and ai+1 = bxi+1c ≥ 1.

The statement of the second part of the theorem is equivalent to showing that there exist
positive integers m, k such that xk = xk+m. (In this case, the continued fraction procedure
ensures that ak = am+k and xk+1 = xm+k+1, etc. . . )

We have

x1 =
1

p0+
√

D
q0

− a0

=
q0

p0 − a0q0 +
√

D
=

q0(p0 − a0q0 +
√

D)

p2
0 −D + q0(a2

0q0 − 2a0p0)
.

Since q0 | p2
0 −D it follows that p1 = p0 − a0q0 and q1 =

p2
0−D

q0
+ a2

0q0 − 2a0p0 are integers

and x1 =
p1 +

√
D

q1

.

Note that q1 =
p2
1−D

q0
, hence q1 | p2

1 −D.
An induction argument shows that, for i ≥ 1 we have

• 1 < xi =
pi +

√
D

qi

• pi+1 = pi − aiqi ∈ Z

• qi+1 =
p2

i+1 −D

qi

∈ Z
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• qi | p2
i −D

• qi 6= 0 (this comes down to
√

D /∈ Q.)

• qi > 0

• 0 < pi −
√

D < qi < pi +
√

D < 2
√

D.

It follows that (pi, qi) must be positive integers smaller than 2
√

D. There are only finitely
many possibilities for such pairs, and thus, the pigeonhole principle ensures that there are
positive integers m, k such that (pk, qk) = (pm+k, qm+k) and so xk = xm+k.

Going back to our initial goal, the study of Pell’s equations, we can now formulate
the following results. We state them without proofs, which you can find in any standard
textbook. One of my favorites is Davenport’s Higher Arithmetic.

Theorem 6.15. Let d > 0 be a positive integer that is not a square.

(i) Then the periodic fraction of
√

d is of the form

√
d = [a, b1, . . . , bm−1, 2a]

with bi = bm−i for 1 ≤ i ≤ m− 1.

(ii) Let
p

q
= [a, b1, . . . , bm−1]

written in lowest terms. Then (p, q) is the smallest positive integer solution to the
equation

x2 − dy2 = (−1)m.

(iii) The smallest positive integer solution to Pell’s equation

x2 − dy2 = 1 (6.1)

is given by {
(p, q) if m is even;

(p2 + dq2, 2pq) if m is odd.

Theorem 6.16. Let d > 0 not a perfect square. Pell’s equation

x2 − dy2 = −1 (6.2)

has positive integer solution if and only if the continued fraction of
√

d has odd period.
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7 Primes of the form p = x2 + ny2

In Section 2 we proved that a prime p can be written as the sum of two squares if and
only if p = 2 or p ≡ 1 (mod 4). One direction was easy, but the other one was completely
non-trivial. The proof consisted of two steps.

Reciprocity step: A prime p ≡ 1 (mod 4), then it divides N = a2 + b2 with a and b
relatively prime integers.

The proof was a bit ad-hoc. We used the fact that 4 | φ(p) to find an integer a for
which a2 + 1 ≡ 0 (mod p).

Descent step: If a prime p divides a number N of the form N = a2 + b2, where (a, b) = 1,
then p itself can be written as p = x2 + y2 for some (x, y) = 1.

This step was based on Lemma 2.3 which said that if a prime q = x2 +y2 divides a sum
of squares a2 + b2 = N with (a, b) = 1, then N/q can be written as a sum of relatively
prime squares.

Furthermore, we used in an essential way the fact that if a number N is the sum of
two squares, then all its prime divisors can be written as sums of two squares.

One can look at other questions of this type. For instance, Fermat himself stated (and Euler
proved) the following two results.

Theorem 7.1. A prime p is of the form p = x2 + 2y2 if and only if p = 2 or p ≡ 1 or 3
(mod 8).

Theorem 7.2. A prime p is of the form p = x2 +3y2 if and only if p = 3 or p ≡ 1 (mod 3).

Again, it is easy to show that if the prime has the given form in terms of squares, then
it lands in the desired congruence class. For the other direction, let us try to imitate the
procedure from Section 2.

Descent step

We start by considering the generalization of the Lemma 2.3. This is the first component of
our descent step.

Lemma 7.3. Fix n ∈ Z>0. Suppose M is an integer of the form M = a2+nb2 with (a, b) = 1
and that q = x2 + ny2 is a prime divisor of M. Then there exist integers (c, d) = 1 such that
M/q = c2 + nd2.

Proof. The general case is one of the homework problems. Here we discuss only the proof in
the case n = 2.

We know that M = a2 + 2b2, (a, b) = 1, q = x2 + 2y2 is prime and q | M. Since q is prime
x and y are forced to be relatively prime. Just as in the proof of Lemma 2.3 we look at

x2M − 2b2q = x2(a2 + 2b2)− 2b2(x2 + 2y2) = (ax− 2by)(ax + 2by).
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Since q | (x2M − 2b2q) it follows that q | (ax − 2by) or q | (ax + 2by). Without loss of
generality (we can always change the sign of b), we can assume that

q | ax− 2by.

Thus, there exist an integer d such that ax− 2by = dq. We can rewrite this as

2by = ax− dq = ax− dx2 − 2dy2,

which implies that x | 2y(b + dy). Not only is x relatively prime to y, but it is also odd (if x
is even then q cannot be prime). Therefore x | (b + dy), so

b + dy = cx

for some integer c. On the other hand, 2cxy = 2y(b + dy) = x(a− dx), so

a− dx = 2cy.

But then

M = a2 + 2b2 = (dx + 2cy)2 + 2(cx− dy)2 = (x2 + 2y2)(c2 + 2d2) = q(c2 + 2d2).

Note that since (a, b) = 1 we must also have (c, d) = 1.

And now we try to reproduce the second component of the descent step. That is we
would like to say that

p prime, p | a2 + nb2 with (a, b) = 1 =⇒ p = x2 + ny2. (7.1)

As in the Section 2 we can assume that

|a|, |b| ≤ p

2
.

Then, if p is odd

a2 + nb2 <
n + 1

4
p2.

If n ≤ 3, this implies that a2 +nb2 < p2 and therefore any prime divisor q 6= p of a2 +nb2

has to be q < p. Now we can complete the descent step using the same argument as in
Section 2.2.

For n = 1 : done in Section 2.2.

For n = 2 : assume that p cannot be written as

x2 + 2y2. (7.2)
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If all the other prime divisors of a2 + 2b2 could be written in the form (7.2), then Lemma
7.3 would imply that p can also be written as in (7.2) and we assumed that this is not the
case. (Here we used that p2 - a2 +2b2 because a2 +2b2 < p2.) Hence there must exist a prime
divisor p1 6= p of a2 +2b2 that cannot be expressed as (7.2). But we have seen that any other
prime divisor p1 of a2 +2b2 has to be p1 < p. By the same argument now there must exist yet
another prime p2 < p1 < p that cannot be written in the given form (7.2). And then another,
and another. . . There is nothing to prevent us from repeating this process indefinitely (note
that 2 is of the desired form) and thus we get an infinite decreasing sequence of positive (and
prime) numbers. This contradiction finishes the descent step.

For n = 3 : see the homework problems.

Note that (7.1) cannot hold in general. For instance, in the case n = 5 we see that 3 | 21 =
12 + 5 · 22, but 3 cannot be written as x2 + 5y2. So we need to figure out how the prime
divisors of a2 + nb2 can be represented. The answer will come from Legendre’s theory of
reduced quadratic forms. (See Section 9.)

Reciprocity step

We need to find congruence conditions which will guarantee that p | x2 + ny2 for some
(x, y) = 1.

The problem is that we cannot adapt directly our proof from the n = 1 case (Section 2).
This is because our proof was done in an ad-hoc manner. Namely, to recap, we said that if
p ≡ 1 (mod 4), then φ(p) = 4k for some integer k. Therefore the polynomial X4k − 1 has 4k
roots (mod p). But

X4k − 1 = (X2k − 1)(X2k+1 + 1).

Since X2k−1 can have at most 2k roots (mod p), it follows that there must exist an integer
(a, p) = 1 such that a2k +1 ≡ 0 (mod p). Thus p | (ak)2 +12 and since ak and 1 are relatively
prime, we are done.

But this cannot be replicated directly for n = 2 for instance.
One more thing that is worth noticing. We have the following conjectures (due to Fermat).

• n = 1 : p ≡ 1 (mod 4) =⇒ p | a2 + b2 for some (a, b) = 1.

• n = 2 : p ≡ 1, 3 (mod 8) =⇒ p | a2 + 2b2 for some (a, b) = 1.

• n = 3 : p ≡ 1 (mod 3) =⇒ p | a2 + 3b2 for some (a, b) = 1.

The key observation is that these are all congruences modulo 4n. (The last one can be
restated as p ≡ 1, 7 (mod 12).) And indeed, we are going to find conditions (mod 4n) that
would ensure that a prime p is of the form x2+ny2. A systematic approach will be formulated
in terms of the Legendre symbol (see Section 8).
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8 Quadratic reciprocity

8.1 Legendre symbol

In this section p will be an odd prime.

Definition. An integer a 6≡ 0 (mod p) is called a quadratic residue modulo p if there exist
x ∈ Z such that x2 ≡ a (mod p); otherwise the integer a 6≡ 0 (mod p) is called a quadratic
nonresidue modulo p.

Note that the definition depends only on the residue class of a (mod p).

Example

p = 3 p = 5 p = 7
quadratic residues 1 1, 4 1, 2, 4
quadratic nonresidues 2 2, 3 3, 5, 6

Lemma 8.1. In any reduced residue system modulo p, there are exactly p−1
2

quadratic residue

and p−1
2

quadratic nonresidues.

Proof. Exercise.

Note: We could try to make a similar definition modulo an odd positive integer n. But
Lemma 8.1 would not hold. For instance, if we take n = 15 we have 8 modulo classes
relatively prime to 15 : 1, 2, 3, 7, 811, 13, 14. But only 1 and 4 are quadratic residues.

Definition. The Legendre symbol modulo p is the function Z → C given by

(
a

p

)
=


0 if p | a
1 if p - a and a is a quadratic residue (mod p)

−1 if p - a and a is a quadratic nonresidue (mod p).

Example (
1

3

)
= 1

(
2

3

)
= −1

(
−43

3

)
=

(
2

3

)
= 1

(
2

7

)
= 1

(
14

7

)
= 0

In general

(
1

p

)
= 1 for any odd prime p.

The connection to the reciprocity step in Section 7 is provided by the following fact.

Proposition 8.2. Let n be an integer relatively prime to p. Then

p | a2 + nb2 for some integers (a, b) = 1 ⇐⇒
(
−n

p

)
= 1.

27



Proof. First assume that there exist integers (a, b) = 1 such that a2+nb2 ≡ 0 (mod p). Since
a and b are relatively prime, it follows that b 6≡ 0 (mod p). Therefore there exist c ∈ Z such
that bc ≡ 1 (mod p). But then

a2c2 + n ≡ 0 (mod p) =⇒
(
−n

p

)
= 1.

The other direction is even simpler. Since −n is a quadratic residue (mod p), there exists
an integer a such that a2 ≡ −n (mod p). Hence p | a2 + n · 12 and (a, 1) = 1.

Corollary 8.3. (
−1

p

)
= (−1)

p−1
2 =

{
1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4).

Proof. Follows immediately from Proposition 8.2 and Theorem 2.1.

Lemma 8.4 (Euler’s criterion). (
a

p

)
≡ a

p−1
2 (mod p).

Proof. If p | a we get 0 on both sides and the equality holds.

If p - a, then ap−1 ≡ 1 (mod p), so a
p−1
2 ≡ ±1 (mod p). We have two cases.

• If

(
a

p

)
= 1, there exists x 6≡ 0 (mod p) such that a ≡ x2 (mod p), so

a
p−1
2 ≡ xp−1 (mod p) ≡ 1 (mod p) ≡

(
a

p

)
(mod p).

• If

(
a

p

)
= −1, it is enough to show that a

p−1
2 6≡ 1 (mod p). Consider the polynomial

f(X) = X
p−1
2 − 1.

It has at most p−1
2

roots modulo p. On the other hand, we have seen from the previous
case that all the quadratic residues are roots of f(X). By Lemma 8.1, there are exactly
p−1
2

quadratic residues (mod p). Hence no quadratic residue can be a root of f(X),
and we are done.

Proposition 8.5. The Legendre symbol modulo p is a completely multiplicative function.

28



Proof. We apply Euler’s criterion twice.(
a

p

)(
b

p

)
≡ a

p−1
2 · b

p−1
2 (mod p) ≡ (ab)

p−1
2 (mod p) ≡

(
ab

p

)
(mod p).

The result follows since 1 6≡ −1 (mod p) and 0 6≡ ±1 (mod p).

Proposition 8.6. (
2

p

)
= (−1)

p2−1
8 =

{
1 p ≡ ±1 (mod 8)

−1 p ≡ ±3 (mod 8).

Proof. By Euler’s criterion we know that(
2

p

)
≡ 2

p−1
2 (mod p).

There are exactly p−1
2

even integers between 1 and p. We have the following congruences for
them.

p− 1 ≡ 1(−1)1 (mod p) 2 ≡ 2(−1)2 (mod p)
p− 3 ≡ 3(−1)3 (mod p) 4 ≡ 4(−1)4 (mod p)
...

...

One of the columns will end with either p− p−1
2

or p−1
2

(whichever one is even). Taking
the product of all these relations we obtain

2 · 4 · · · (p− 1) ≡
(

p− 1

2

)
!(−1)1+2+...+ p−1

2 (mod p),

which can be rewritten as

2
p−1
2

(
p− 1

2

)
! ≡

(
p− 1

2

)
!(−1)

p2−1
8 (mod p).

Since p -
(

p−1
2

)
! this simplifies to

2
p−1
2 ≡ (−1)

p2−1
8 (mod p)

and the desired result follows.

Corollary 8.7.

p | a2 + 2b2 for some integers (a, b) = 1 ⇐⇒ p ≡ 1, 3 (mod 8).
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Proof. By Proposition 8.2 we know that

p | a2 + 2b2 for some integers (a, b) = 1 ⇐⇒
(
−2

p

)
= 1,

so all we need to do is figure out for which residue classes (mod 8) the Legendre symbol(−2
p

)
is equal to 1. Since the Legendre symbol is completely multiplicative we have(
−2

p

)
= 1 ⇐⇒

(
−1

p

)(
2

p

)
= 1 ⇐⇒

(
−1

p

)
=

(
2

p

)
⇐⇒ (−1)

p−1
2 = (−1)

p2−1
8 .

In other words, we need to see when

p− 1

2
≡ p2 − 1

8
(mod 2).

If p = 8k + 1, then
p− 1

2
= 4k,

p2 − 1

8
= 8k2 + 2k both even

If p = 8k + 3, then
p− 1

2
= 4k + 1,

p2 − 1

8
= 8k2 + 6k + 1 both odd

If p = 8k + 5, then
p− 1

2
= 4k + 2,

p2 − 1

8
= 8k2 + 10k + 3 one even, one odd

If p = 8k + 7, then
p− 1

2
= 4k + 3,

p2 − 1

8
= 8k2 + 14k + 6 one odd, one even

The above Corollary, together with the descent step for n = 2 that we proved in Section 7,
proves Theorem 7.1.

Lemma 8.8 (Gauss’s Lemma). Assume n 6≡ 0 (mod p). For 1 ≤ t ≤ p−1
2

denote by xt the
remainder of the division of tn by p. Let

m = #{xt; xt >
p

2
, 1 ≤ t ≤ p− 1

2
}.

Then (
n

p

)
= (−1)m.

Proof. Denote r =
p− 1

2
.

First note that x1, . . . , xr are distinct integers between 1 and p−1. Indeed, since they are
remainders to divisions by p, then have to be 0 ≤ xt ≤ p− 1. On the other hand, since p - n,

p cannot divide any of the integers n, 2n, 3n, . . . ,
p− 1

2
n. So xt ≥ 1 for all 1 ≤ t ≤ p− 1

2
.
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On the other hand, if xt = xs for some 1 ≤ s, t ≤ p−1
2

, we must have tn ≡ sn (mod p). This
means p | t − s and given the range of possible values for s and t, the only way this could
happen is for s = t.

Denote by A the set of xt’s that are < p/2 and by B the set of xt’s that are > p/2.
Note that by definition m = #B. Denote k = #A. Since A ∪ B = {x1, . . . , xr} and

A ∩B = ∅ and not two xt’s are the same, it follows that

k + m = r =
p− 1

2
.

Denote by a1, . . . , ak the elements of A and by b1, . . . , bm the elements of B. Let

C = {c1, . . . , cm} where cj = p− bj, 1 ≤ j ≤ m.

Then #C = m and both

A, C ⊂
{

1, 2, . . . ,
p− 1

2

}
. (8.1)

Claim A ∩ C = ∅.
If we had ai = cj for some 1 ≤ i ≤ k and some 1 ≤ j ≤ m, then ai + bj = p. By the very

definition of the sets A and B, there exist integers 1 ≤ s, t ≤ p− 1

2
such that ai = xs ≡ sn

(mod p) and bj = xt ≡ tn (mod p). Therefore

sn + tn ≡ 0 (mod p).

Since (n, p) = 1, this means that p | s+ t. But this is impossible given that 0 < s+ t ≤ p−1.
The claim implies that

#A ∪ C = m + k =
p− 1

2
. (8.2)

Taken together, (8.1) and (8.2) imply that

A ∪ C =

{
1, 2, . . . ,

p− 1

2

}
.

Therefore the product of all elements of A ∪ C is

a1 · · · akc1 · · · cm =

(
p− 1

2

)
!

Therefore

(
p− 1

2

)
! ≡ a1 · · · ak(−b1) · · · (−bm) (mod p) ≡ (−1)ma1 · · · akb1 · · · bm (mod p)
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Going back to the definition of the sets A and B, this can be rewritten as(
p− 1

2

)
! ≡ (−1)m

∏
1≤t≤r

xt (mod p) ≡ (−1)m
∏

1≤t≤r

tn (mod p).

Hence (
p− 1

2

)
! ≡ (−1)mn

p−1
2

(
p− 1

2

)
! (mod p).

Since
(

p−1
2

)
! 6≡ 0 (mod p), multiplying both sides by (−1)m gives us

(−1)m ≡ n
p−1
2 (mod p),

and the result follows from Euler’s criterion (Lemma 8.4).

Note that we are interested only in the parity of m. The following result deals with said
parity.

Proposition 8.9. Let n be an integer not divisible by p. With the same notation as in
Gauss’s Lemma 8.8, we have

m ≡

(n− 1)
p2 − 1

8
+

∑
1≤t≤ p−1

2

⌊
tn

p

⌋ (mod 2).

In particular, if n is odd, then

m ≡

 ∑
1≤t≤ p−1

2

⌊
tn

p

⌋ (mod 2).

Proof. Denote

γ =
∑

1≤t≤ p−1
2

⌊
tn

p

⌋
.

We will use the same notation from the proof of Gauss’s Lemma 8.8. For each 1 ≤ t ≤ p−1
2

,
we have

tn

p
=

⌊
tn

p

⌋
+

{
tn

p

}
and the fractional part is strictly between 0 and 1. It follows that

xt = p

{
tn

p

}
=

tn

p
−

⌊
tn

p

⌋
. (8.3)
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Recall that we defined sets A = {a1, . . . , ak}, B = {b1, . . . , bm} and C = {c1, . . . , cm}
with cj = p − bj, 1 ≤ j ≤ m. By definition, A and B are disjoint and their union is{
xt; 1 ≤ t ≤ p−1

2

}
, so

k∑
i=1

ai +
m∑

j=1

bj =
∑

1≤t≤ p−1
2

xt.

Let α =
k∑

i=1

ai and β =
m∑

j=1

bj. Substituting (8.3) above we get that

α + β =

 ∑
1≤t≤ p−1

2

tn

− p

 ∑
1≤t≤ p−1

2

⌊
tn

p

⌋ = n
p2 − 1

8
− pγ. (8.4)

We have also seen that the sets A and C are disjoint and their union is
{
1, 2, . . . , p−1

2

}
.

Therefore
k∑

i=1

ai +
m∑

j=1

cj =
∑

1≤t≤ p−1
2

t =
p2 − 1

8
.

We can rewrite this as

α +
m∑

j=1

(p− bj) =
p2 − 1

8
,

which implies that

α− β + pm =
p2 − 1

8
. (8.5)

Adding up (8.4) and (8.5) yields

2α + pm = (n + 1)
p2 − 1

8
− pγ.

When we reduce this mod 2, taking into account that p is odd, we obtain

m ≡ pm (mod 2) ≡ (n + 1)
p2 − 1

8
− pγ (mod 2) ≡ (n− 1)

p2 − 1

8
+ γ (mod 2).

Theorem 8.10 (Quadratic reciprocity law). If p and q are odd primes, then(
p

q

)
= (−1)

(p−1)(q−1)
4

(
q

p

)
.
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Proof. If the two primes are equal, the relation obviously holds. If they are different, then
the Legendre symbols are nonzero, and so the relation is equivalent to(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4. (8.6)

By Gauss’s Lemma 8.8 and Proposition 8.9, the two Legendre symbols are

(
q

p

)
= (−1)m1 where m1 ≡

∑
1≤t≤ p−1

2

⌊
tq

p

⌋
(mod 2);

(
p

q

)
= (−1)m2 where m2 ≡

∑
1≤s≤ q−1

2

⌊
sp

q

⌋
(mod 2).

Hence (8.6) would follow if we proved that∑
1≤t≤ p−1

2

⌊
tq

p

⌋
+

∑
1≤s≤ q−1

2

⌊
sp

q

⌋
=

p− 1

2

q − 1

2
. (8.7)

To this end, consider the function f(x, y) = qx−py on the domain |x| < p
2
, |y| < q

2
. A couple

of observations about f(x, y) are in order.

• x, y ∈ Z =⇒ f(x, y) ∈ Z.

• (x1, y1) 6= (x2, y2) pairs of integers in our domain =⇒ f(x1, y1) 6= f(x2, y2).

The first observation is immediate. For the second, note that, if f(x1, y1) = f(x2, y2) then
q(x1 − x2) = p(y1 − y2). Thus p | x1 − x2 and q | y1 − y2. Given the range in which these
integers live, this is possible only if x1 − x2 = 0 and y1 − y2 = 0.

Therefore f(x, y) takes p−1
2
· q−1

2
nonzero values as the integer x ranges from 1 to p−1

2
and

the integer y ranges from 1 to q−1
2

. Now we count the number of positive and negative values

of f(x, y) in this range. Fix the integer 1 ≤ x ≤ p−1
2

. Then

f(x, y) > 0 ⇐⇒ qx > py ⇐⇒ y <
qx

p
⇐⇒ 1 ≤ y ≤

⌊
tx

p

⌋
and so, the number of positive values that f(x, y) takes is precisely∑

1≤x≤ p−1
2

⌊
tx

p

⌋
.

Similarly, fix an integer 1 ≤ y ≤ q−1
2

. Then

f(x, y) < 0 ⇐⇒ qx < py ⇐⇒ x <
py

q
⇐⇒ 1 ≤ x ≤

⌊
py

q

⌋
,
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and the number of negative values that f(x, y) takes is∑
1≤y≤ q−1

2

⌊
py

q

⌋
.

Therefore (8.7) holds and the theorem is proved.

Note: This proof has a nice interpretation in terms of lattice points in the plane. Find it!

Example: Determine whether 583 is a quadratic residue or nonresidue (mod 907).

(
583

907

)
=

(
11

907

)(
53

907

)
= (−1)

11−1
2

907−1
2

(
907

11

)
(−1)

53−1
2

907−1
2

(
907

53

)
= −

(
9

11

)(
6

53

)
= −

(
3

11

)2(
2

53

)(
3

53

)
= −(−1)

(53−1)(53+1)
8 (−1)

53−1
2

3−1
2

(
53

3

)
=

(
2

3

)
= −1

Therefore 583 is a quadratic nonresidue (mod 907).
Now we are ready to prove the reciprocity step for primes of the form x2 + 3y2. For that,

we need to figure out for which primes 3 is a quadratic residue, and for which it is not. For
p > 3 we have (

3

p

)
= (−1)

3−1
2

p−1
2

(
p

3

)
= (−1)

p−1
2

(
p

3

)
.

The first factor yields a condition modulo 4, while the second yields a condition modulo 3.
Thus we need to look at congruence classes modulo 12. There are four cases.

p (mod 12) p (mod 4) p (mod 3) (−1)
p−1
2

(
p

3

) (
3

p

) (
−3

p

)
1 1 1 1 1 1 1
5 1 2 1 −1 −1 −1
7 3 1 −1 1 −1 1
11 3 2 −1 −1 1 −1

Here we used the fact that(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(
3

p

)
.

Therefore, Proposition 8.2 implies the reciprocity step for n = 3 below.

Proposition 8.11. Let p > 3 be a prime. Then

p | a2 + 3b2 for some integers (a, b) = 1 ⇐⇒ p ≡ 1, 7 (mod 12).
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The above result, together with the descent step outlined in Problem 4 of Homework 4,
prove Theorem 7.2.

The general problem of which primes can be written as x2 + ny2 with n a fixed positive
integer is more complicated though. However, quadratic reciprocity allows us to get closer
to our goal of understanding the reciprocity step.

Proposition 8.12. If p and q are distinct odd primes, then(
q

p

)
= 1 ⇐⇒ p ≡ ±a2 (mod 4q) for some odd integer a.

Proof. Let p∗ = (−1)
p−1
2 p. Then(

p∗

q

)
=

(
(−1)(p−1)/2p

q

)
=

(
−1

q

) p−1
2

(
p

q

)
.

But we know that (
−1

q

)
= (−1)

q−1
2 ,

and therefore (
p∗

q

)
= (−1)

p−1
2

q−1
2

(
p

q

)
.

By quadratic reciprocity (Theorem 8.10),(
p∗

q

)
=

(
q

p

)
.

Therefore it remains to prove that(
p∗

q

)
= 1 ⇐⇒ p ≡ ±a2 (mod 4q) for some odd integer a.

The proof of this last equivalence is left as an exercise.

8.2 Jacobi symbol

In order to move forward toward our goal of completing the reciprocity step in Euler’s
strategy we need to extend the Legendre symbol beyond primes. This extension is due to
Jacobi.

Definition. Let m be an odd positive integer.

• If m = 1, the Jacobi symbol

(
1

)
: Z → C is the constant function 1.
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• If m > 1, it has a decomposition as a product of (not necessarily distinct) primes

m = p1 · · · pr. The Jacobi symbol

(
m

)
: Z → C is given by

(
a

m

)
=

(
a

p1

)
· · ·

(
a

pr

)
.

Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and
nonresidues. That is, we could have

(
a
m

)
= 1 just because two of the factors happen to be

−1. For instance, (
2

15

)
=

(
2

3

)(
2

5

)
= (−1)(−1) = 1,

but 2 is not a square modulo 15. The following properties of the Jacobi symbol are direct
consequences of its definition.

Proposition 8.13. Let m, n be positive odd integers and a, b ∈ Z. Then

(i)

(
1

m

)
= 1;

(ii)

(
a

m

)
= 0 ⇐⇒ (a, m) > 1;

(iii) a ≡ b (mod m) =⇒
(

a

m

)
=

(
b

m

)
;

(iv)

(
ab

m

)
=

(
a

m

)(
b

m

)
;

(v)

(
a

mn

)
=

(
a

m

)(
a

n

)
;

(vi) (a, m) = 1 =⇒
(

a2b

m

)
=

(
b

m

)
.

Proof. Exercise.

Theorem 8.14. Let m, n be positive odd integers. Then

(i)

(
−1

m

)
= (−1)

m−1
2 ;

(ii)

(
2

m

)
= (−1)

m2−1
8 ;

(iii)

(
n

m

)
= (−1)

m−1
2

n−1
2

(
m

n

)
.
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Proof. The first two formulas are trivially true when m = 1 and so is the third if m = 1 or
n = 1 or if (m, n) > 1. We assume that m, n > 1 and (m, n) = 1.
Thus m = p1 · · · pr and n = q1 · · · qs for some primes pi and qj and pi 6= qj for all 1 ≤ i ≤
r, 1 ≤ j ≤ s. Then

m =
r∏

i=1

pi =
r∏

i=1

(1 + (pi − 1)) = 1 +
r∑

i=1

(pi − 1) +
∑

1≤i1<i2≤r

(pi1 − 1)(pi2 − 1)+

. . . products of 3, 4 and so on factors . . .

Since m is odd, so are the primes pi. Therefore pi−1 ≡ 0 (mod 2) and (pi1−1)(pi2−1) ≡ 0
(mod 4). Therefore all the terms in the above sum that are implicit are also divisible by 4.
Hence

m ≡ 1 +
r∑

i=1

(pi − 1) (mod 4),

which is to say

m− 1 ≡
r∑

i=1

(pi − 1) (mod 4).

Since m and the pi’s are odd, it follows that m−1 ≡ 0 (mod 2) and p1−1 ≡ 0 (mod 2), 1 ≤
i ≤ r. Thus we can divide each term above by 2 and still get integers. It follows that

m− 1

2
≡

r∑
i=1

pi − 1

2
(mod 2), (8.8)

so

(−1)
m−1

2 = (−1)
Pr

i=1
pi−1

2 =
r∏

i=1

(−1)
pi−1

2 =
r∏

i=1

(
−1

pi

)
=

(
−1

m

)
.

Similarly,

m2 =
r∏

i=1

p2
i =

r∏
i=1

(
1 + (p2

i − 1)
)

= 1 +
r∑

i=1

(p2
i − 1) +

∑
1≤i1<i2≤r

(p2
i1
− 1)(p2

i2
− 1)+

. . . products of 3, 4 and so on factors . . .

We use again the fact that both m and the pi are odd. That means that m2 − 1 =
(m − 1)(m + 1) is the product of two consecutive even integers, so one of them is divisible
by 4. Thus m2 − 1 ≡ 0 (mod 8) and likewise p2

i − 1 ≡ 0 (mod 8), 1 ≤ i ≤ r. It follows that
the product of two or more factors in the above summation is divisible by 64, hence

m2 − 1 ≡
r∑

i=1

(p2
i − 1) (mod 64).
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Moreover each term is divisible by 8, so

m2 − 1

8
≡

r∑
i=1

p2
i − 1

8
(mod 8),

as integers. It follows that

(−1)
m2−1

8 = (−1)
Pr

i=1

p2
i−1

8 =
r∏

i=1

(−1)
p2
i−1

8 =
r∏

i=1

(
2

pi

)
=

(
2

m

)
.

The last part of the theorem, in the case m, n > 1 and (m, n) = 1, is equivalent to(
m

n

)(
n

m

)
= (−1)

m−1
2

n−1
2 .

But (
m

n

)(
n

m

)
=

∏
1≤i≤r
1≤j≤s

(
pi

qj

)(
qj

pi

)
Thm 8.10

=
∏

1≤i≤r
1≤j≤s

(−1)
pi−1

2

qj−1

2 = (−1)t

where

t =
∑
1≤i≤r
1≤j≤s

pi − 1

2
· qj − 1

2
=

∑
1≤i≤r

pi − 1

2

∑
1≤j≤s

qj − 1

2
.

By (8.8), we have t ≡ m− 1

2
· n− 1

2
(mod 2) and the quadratic reciprocity law follows.

Jacobi symbols have many applications aside from their use in understanding the reci-
procity step formulated by Euler. The following result is an example of how they can be
used in the study of certain Diophantine equations.

Proposition 8.15. The Diophantine equation

y2 = x3 + k

has no solution if k = (4n− 1)3 − 4m2 and no prime p ≡ 3 (mod 4) divides m.

Proof. We argue by contradiction. Assume that (x, y) is a solution. Since k ≡ −1 (mod 4),
it follows that

y2 ≡ x3 − 1 (mod 4).

But y2 ≡ 0, 1 (mod 4), so x cannot be even and x 6≡ −1 (mod 4). Therefore x ≡ 1 (mod 4).
Let a = 4n− 1. Then a ≡ −1 (mod 4) and k = a3 − 4m2. We have

y2 = x3 + k = x3 + a3 − 4m2,

so
y2 + 4m2 = x3 + a3 = (x + a)(x2 − ax + a2). (8.9)
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Given that x ≡ 1 (mod 4) and a ≡ −1 (mod 4), we have that the last factor

x2 − ax + a2 ≡ 3 (mod 4).

Thus x2 − ax + a2 is odd and it must have some prime divisor p ≡ 3 (mod 4). But (8.9)
implies that p | y2 + 4m2, i.e. −4m2 ≡ y2 (mod p) so(

−4m2

p

)
= 1.

On the other hand, since p ≡ 3 (mod 4), we have that p - m and therefore(
−4m2

p

)
=

(
−1

p

)
= −1 (contradiction!)

We now go back to our main goal of understanding the reciprocity step in Euler’s strategy.
For that we need the following property of the Jacobi symbol.

Proposition 8.16. If m, n are positive odd integers and is an integer with D ≡ 0, 1 (mod 4)
such that m ≡ n (mod D), then (

D

m

)
=

(
D

n

)
.

Proof. First we treat the case when D ≡ 1 (mod 4).

If D > 0, then (
D

m

)
= (−1)

m−1
2

D−1
2

(
m

D

)
.

But D−1
2

is even, hence

(
D

m

)
=

(
m

D

)
. The argument holds for any positive odd integer

m, and it can therefore be applied just as well to n. The result follows immediately
since m ≡ n (mod D).

If D < 0, set d = −D. Then d > 0 and d ≡ 3 (mod 4), so d+1
2

is even. We have(
D

m

)
=

(
−d

m

)
=

(
−1

m

)(
d

m

)
= (−1)

m−1
2 (−1)

m−1
2

d−1
2

(
m

d

)
= (−1)

m−1
2

d+1
2

(
m

d

)
=

(
m

d

)
.

Since the same holds for n, the result follows from the fact that m ≡ n (mod d).

Now consider the other case, D ≡ 0 (mod 4). It follows that D = 2ab for some positive
odd integer b and a ≥ 2.
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If D > 0, then (
D

m

)
=

(
2

m

)a(
b

m

)
= (−1)

m2−1
8

a(−1)
m−1

2
b−1
2

(
m

b

)
.

Similarly, (
D

n

)
= (−1)

n2−1
8

a(−1)
n−1

2
b−1
2

(
n

b

)
.

The result would follow if we showed that

m2 − 1

8
a ≡ n2 − 1

8
a (mod 2) (8.10)

and
m− 1

2

b− 1

2
≡ n− 1

2

b− 1

2
(mod 2). (8.11)

We have
m− 1

2

b− 1

2
− n− 1

2

b− 1

2
=

m− n

2

b− 1

2

and this is even since 4 | m− n. Thus (8.11) is proved. For the other relation, we have

m2 − 1

8
a− n2 − 1

8
a =

m2 − n2

8
a =

(m− n)(m + n)

8
a.

Now 2 | m + n and 2a | m − n. Thus m2 − n2 ≡ 0 (mod 16) when a ≥ 3 and (8.10)
follows in this case. On the other hand, if a = 2, then m2−n2

8
a is again even and we are

done. (We used the fact that m2−n2

8
∈ Z.)

If D < 0, set d = −D. Then d > 0 and d ≡ 0 (mod 4). From above it follows that(
d

m

)
=

(
d

n

)
.

We also have (
D

m

)
=

(
−d

m

)
=

(
−1

m

)(
d

m

)
= (−1)

m−1
2

(
d

m

)
and, similarly, (

D

n

)
= (−1)

n−1
2

(
d

n

)
.

The result follows from the fact that

m− 1

2
≡ n− 1

2
(mod 2) ⇐⇒ 2 | m− n

2
⇐⇒ 4 | m− n ⇐

{
m ≡ n (mod D)

D ≡ 0 (mod 4).
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Theorem 8.17. Let D ≡ 0, 1 (mod 4) be a nonzero integer. Then there exists a unique
group homomorphism χD : (Z/DZ)× → {±1} such that

χD([p]) =

(
D

p

)
(the Legendre symbol modulo p) for all odd primes p - D.

Furthermore,

χD([−1]) =

{
1 if D > 0;

−1 if D < 0.

Proof. First we show existence. Let

χ : (Z/DZ)× → {±1}, χ([a]) =

(
D

m

)
where m ≡ a (mod D) is an odd positive integer.

We need to show that this is a well-defined map, and for that we need to prove the following
two facts.

Claim 1 For any (a, D) = 1 there exists a positive odd integer m ≡ a (mod D).
Claim 2 If m, n are positive odd integers and m ≡ n (mod D), then(

D

m

)
=

(
D

n

)
.

The second claim is an immediate consequence of Proposition 8.16. The first one, is also
easy. There exists some integer k for which a + kD > 0. If D is even, then a has to be odd
and a + kD is odd and positive. If D is odd, then either a + kD or a + kD + |D| is both odd
and positive.
The map χ is clearly a group homomorphism since the Jacobi symbol is completely multi-
plicative. The condition on primes is just as clear.

Now we have to prove uniqueness. Assume that f : (Z/DZ)× → {±1} is a group

homomorphism with f([p]) =

(
D

p

)
for any odd prime p - D. Clearly f(m) = 1. Also, for

any odd integer m > 1, we have m = p1 · · · pr for some odd primes p1, . . . , pr. Then

f([m]) = f([p1]) · · · f([pr]) =

(
D

p1

)
· · ·

(
D

pr

)
=

(
D

m

)
= χ([m]).

Since we have shown that every class [a] ∈ (Z/DZ)× contains a positive odd integer m, it
follows that f([a]) = χ([a]) for all [a] ∈ (Z/DZ)× .
The proof for the expression of χD([−1]) is left as an exercise.

Corollary 8.18. Let n be a nonzero integer and let χ = χ−4n : (Z/4nZ)× → {±1} be the
group homomorphism defined in Theorem 8.17 when D = −4n. Let p be an odd prime, p - n.
The following are equivalent.
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(i) p | a2 + nb2 for some integers (a, b) = 1.

(ii)

(
−n

p

)
= 1.

(iii) [p] ∈ ker χ ⊂ (Z/4nZ)× .

Proof. The statements (i) and (ii) are equivalent by Proposition 8.2.

We want to show that (ii) ⇐⇒ (iii). Theorem 8.17 says that (iii) ⇐⇒
(
−4n

p

)
= 1. Since

(
−4n

p

)
=

(
2

p

)2(−n

p

)
=

(
−n

p

)
,

the proof is complete.

Note that this finishes the Reciprocity Step from Euler’s strategy because if ker(χ) =
{[α], [β], [γ], . . .}, Corollary 8.18 says that

p | a2 + nb2, (a, b) = 1 ⇐⇒ p ≡ α, β, γ, . . . (mod 4n).

This is precisely the kind of condition we were looking for.

9 Quadratic forms

We now go back to the descent step for primes of the form x2 + ny2 with n > 3. There
are two examples we need to keep in mind. Euler made two conjectures regarding the cases
n = 5 and n = 14. First, let’s see what the reciprocity step says.
For n = 5, we need to look at congruence classes in (Z/20Z)× . We can look at them one by
one and, using Corollary 8.18, see that

p | a2 + 5b2, (a, b) = 1 ⇐⇒ p ≡ 1, 3, 7, 9 (mod 20).

But here’s Euler’s conjecture (and of course, he had good numerical evidence for it). We
have seen that not all divisors of a number of the form a2 + 5b2 can be written in the same
form, which momentarily derailed our strategy. Indeed, things are more complicated in this
case and we need to understand what forms the divisors of a2 + 5b2 can have.

Conjecture 9.1 (Euler). If p 6= 5 is an odd prime, then

p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20)

2p = x2 + 5y2 ⇐⇒ p ≡ 3, 7 (mod 20)

The congruence classes break into two groups – 1, 9 and 3, 7 – that have very different
representability properties. To see what’s going on, recall that we have seen that not all
divisors of a number of the form a2 + 5b2 can be written in the same form.
The case n = 14 is even more complicated.
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Conjecture 9.2 (Euler). If p 6= 7 is an odd prime, then

p =

{
x2 + 14y2

2x2 + 7y2
⇐⇒ p ≡ 1, 9, 15, 23, 25, 39 (mod 56)

3p = x2 + 5y2 ⇐⇒ p ≡ 3, 5, 13, 19, 27, 45 (mod 56)

As in the previous case, the congruence classes modulo 56 that appear above are precisely

the ones for which

(
−14

p

)
= 1. A new feature is that x2 + 14y2 and 2x2 + 7y2 appear

together. Another question is where the 2p in Conjecture 9.1 and 3p in Conjecture 9.2 come
from. Why are they different multiples of p? Why 2 and 3 appear there, and not, say, 29?
Gauss composition explains this phenomenon. What other condition is necessary to ensure
p = x2 + 14y2? This is a much deeper question and the answer involves class field theory
which is outside the scope of this class. For now, it should be clear that we need to know
more about these quadratic polynomials.

Definition. An integral binary quadratic form (for short, integral bqf) is a degree 2 homo-
geneous polynomial in two variables with integer coefficients, i.e. f(x, y) = ax2 + bxy +
cy2, a, b, c,∈ Z.

Note: One can define binary quadratic forms over any commutative ring R. In particular,
they can be defined over Q or R.

Definition. An integral binary quadratic form f(x, y) = ax2 + bxy + cy2 is primitive if
(a, b, c) = 1.

Note: Any integral form is an integer multiple of a primitive form.

Definition. An integer m is represented by a integral bqf f(x, y) if the equation

f(x, y) = m

has an integer solution (x, y). If we can find an integer solution with x, y relatively prime,
we say that m is properly represented by f(x, y).

Example 9.3. A bqf f(x, y) = ax2 + bxy + cy2 properly represents both a = f(±1, 0) and
c = f(0,±1).

The question we are trying to answer is which primes p can be (properly) represented by
the (primitive) integral bqf x2 + ny2.

Lemma 9.4. If m is an integer represented by the bqf f(x, y), then m can be written as
m = d2m′ where m′, d ∈ Z and m′ is properly represented by f(x, y).
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Proof. Since m = f(x, y) for some integers x, y with d = (x, y), it follows that m = d2f(x′, y′)
where x = dx′, y = dy′. But then (x′, y′) = 1 and the result follows by setting m′ = f(x′, y′).

Definition. Two bqf ’s f(x, y) and g(x, y) are equivalent if there are integers α, β, γ, δ such
that f(x, y) = g(αx + βy, γx + δy) and αδ − βγ = ±1. In linear algebra terms, this just
says that there exists a matrix A ∈ GL(2, Z) – the group of 2 × 2 invertible matrices with
coefficients in Z –such that

f(~x) = g(A~x)

Note: You can think of the bqf f(x, y) = ax2 + bxy + cy2 as

f(~x) = t~x

(
a b

2
b
2

c

)
~x

Proposition 9.5. The above definition describes indeed an equivalence relation.

Proof. Exercise.

Definition. We say that the equivalence of two bqf ’s is a proper equivalence if αδ − βγ = 1
(i.e. the matrix A ∈ SL(2, Z) – the subgroup of GL(2, Z) that consists of matrices with
determinant equal to 1). It is called an improper equivalence otherwise (i.e. αδ − βγ =
−1 ⇐⇒ det A = −1).

Proposition 9.6. Proper equivalence is indeed an equivalence relation.

Proof. Exercise.

Note: The terms “equivalence” and “proper equivalence” are due to Gauss. He had good
reason to distinguish between the two notions.

Example 9.7. The forms ax2 + bxy + cy2 and ax2 − bxy + cy2 are always (improperly)

equivalent via A =

(
1 0
0 −1

)
. However sometimes they are properly equivalent (e.g. 2x2 ±

2xy + 3y2) and sometimes they are not (e.g. 3x2 ± 2xy + 5y2).

Lemma 9.8. A bqf f(x, y) properly represents an integer m if and only if f(x, y) is properly
equivalent to mx2 + bxy + cy2 for some b, c ∈ Z.

Proof. Assume m is properly represented by f(x, y). The there exist relatively prime integers
α, γ such that f(α, γ) = m. Since (α, γ) = 1, there exist integers β, δ such that

αδ − βγ = 1 ⇐⇒
(

α β
γ δ

)
∈ SL(2, Z).

Then
f(αx + βy, γx + δy) = f(α, γ)x2 + [f(α, δ) + f(β, γ)] xy + f(β, δ)y2,

which is of the desired form since f(α, γ) = m.
Conversely, note that g(x, y) = mx2 + bxy + cy2 properly represents m because m = g(1, 0).
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Proposition 9.9. (i) Two equivalent bqf ’s represent the same integers.

(ii) Two equivalent bqf ’s properly represent the same integers.

(iii) If a bqf f(x, y) is equivalent to a primitive bqf, then f(x, y) itself is primitive.

Proof. Exercise.

Definition. The discriminant of the bqf ax2 + bxy + cy2 is the integer D = b2 − 4ac.

Proposition 9.10. Two equivalent forms have the same discriminant.

Proof. Exercise.

The discriminant D has a strong effect on the behavior of the bqf f(x, y) = ax2+bxy+cy2.
We have

4af(x, y) = (2ax + by)2 −Dy2. (9.1)

Thus, if D < 0, then 4af(x, y) ≥ 0, so the form represents either only nonnegative
integers if a > 0 or only nonpositive integers if a < 0. (Note that we cannot have a = 0,
since that would make D = b2 which cannot be negative.)

On the other hand, if D > 0 then

f(b,−2a) = −aD

and
f(1, 0) = a

have opposite signs whenever a 6= 0. When a = 0, D = b2 > 0 so b 6= 0 and f(x, y) =
bxy + cy2 = y(bx+ cy). Then f(−c+1, b) = b(−bc+ b+ bc) = b2 = D > 0 and f(−c−1, b) =
−b2 = −D < 0. Therefore f(x, y) represents both positive and negative integers.

Definition. A bqf f(x, y) = ax2 + bxy + cy2 is called

• positive definite if D < 0, a > 0. It cannot represent negative integers.

• negative definite if D < 0, a < 0. It cannot represent positive integers.

• indefinite if D > 0. It represents both positive and negative integers (D > 0).

Note: The above notions are invariant under equivalence.

Examples:

• x2 + ny2 is positive definite when n > 0.

• x2 + 3xy + y2 is indefinite

• −x2 + 3xy − 13y2 is negative definite.
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The discriminant D influences the form in one other way. Since D = b2− 4ac it follows that

D ≡ b2 (mod 4) ≡ 0, 1 (mod 4).

Proposition 9.11. Let D ≡ 0, 1 (mod 4) be an integer and m be an odd integer such that
(m, D) = 1. Then m is properly represented by a primitive bqf of discriminant D if and only
if D is a quadratic residue modulo m.

Proof. First assume m is properly represented by a primitive form g(x, y). By Lemma 9.8,
g(x, y) is properly equivalent to a form f(x, y) = mx2 + bxy + cy2 where b, c ∈ Z. By
Proposition 9.9, f(x, y) is also primitive and by Proposition 9.10, m is properly represented
by f(x, y). The discriminant of f(x, y) is D = b2 − 4mc ≡ b2 (mod m), so D is a quadratic
residue modulo m.
Conversely, suppose D ≡ b2 (mod m). Since m is odd, we assume that D and b have the
same parity (replace b by b+m if necessary). Since D ≡ 0, 1 (mod 4) it follows that 4 | D−b2

and thus
D ≡ b2 (mod 4m).

Hence there exists c ∈ Z such that D = b2 − 4mc.
Therefore f(x, y) = m2 + bxy + cy2 properly represents m (by Lemma 9.8) and has discrim-
inant D. Since (m, D) = 1 it follows that f(x, y) is primitive.

Corollary 9.12. Let n ∈ Z and p be an odd prime that does not divide n. Then

(
−n

p

)
= 1

if and only if p is represented by a primitive form of discriminant −4n.

Proof. This follows immediately from Proposition 9.11, since p is prime and therefore −4n

is a quadratic residue modulo p if and only if 1 =

(
−4n

p

)
=

(
−n

p

)
.

This corollary gives an inkling into how to represent the primes that divide numbers of
the form a2 + nb2, (a, b) = 1. Namely, we have seen that these primes are the ones for which(−n

p

)
= 1. Corollary 9.12 tells us that such primes are represented by some bqf of discriminant

−4n.
The problem is that there are too many bqf of discriminant −4n. For instance, all the

forms that appear in Euler’s Conjecture 9.2 have discriminant −56. Or, apply the proof of
Proposition 9.11 to n = 3 (so D = −12) and m = 13. Since

(−3
13

)
= 1, Proposition 9.11

implies that 13 is represented by some bqf of discriminant −12. Going through the proof,
we have to find b even such that

D ≡ b2 (mod 4m) ⇐⇒ −12 ≡ b2 (mod 52).

Going through −12 (mod 52) = {. . . ,−12, 40, 92, 144 = 122, . . .} we see that we can take
b = 12. Next, we need to find c such that

D = b2 − 4mc ⇐⇒ −12 = 144− 52c ⇐⇒ c = 3.
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Thus 13 is represented by the bqf f(x, y) = 13x2+12xy+3y2 (which has indeed discriminant
−12). This is not exactly enlightening. What we need is a way to produce simpler bqf’s that
represent a given integer.

From now on we restrict our attention to primitive, positive definite binary quadratic
forms. Happily enough, the forms x2 + ny2(n > 0) that we care about are indeed primitive
and positive definite.

Definition. A primitive positive definite bqf ax2 + bxy + cy2 is reduced if

0 ≤ |b| ≤ a ≤ c and b ≥ 0 if either |b| = a or a = c. (9.2)

Note: The integers a, c must be positive since the form is positive definite.

Examples:

• If n > 0, then x2 + ny2 is reduced.

• 2x2 + 7y2 is reduced.

• 13x2 + 12xy + 3y2 is primitive and positive definite, but not reduced.

Theorem 9.13. Any primitive positive definite bqf is properly equivalent to a unique reduced
form.

Proof. Our proof has three steps.
Step 1 We show that a given primitive, positive definite bqf f(x, y) is equivalent to a
primitive positive definite bqf f(x, y) = ax2 + bxy + cy2 with 0 ≤ |b| ≤ a ≤ c.

Among all the forms properly equivalent to g(x, y) – which we already know that have to
be primitive and positive definite – choose the one with the minimal coefficient of xy. That
is, choose f ′(x, y) = a′x2 + b′xy + c′y2 such that |b′| is minimal. Assume by contradiction
that a′ < |b′|. Then, for any integer m,

g′(x, y) = g′(x + my, y) = a′x2 + (2a′m + b′)xy + (c′ + a′m2)y2

is properly equivalent to our g(x, y). Since a′ < |b′| we can choose m ∈ Z (think quotient
of division of |b′| by 2a) such that 0 ≤ |2a′m + b′| < |b′|. This contradicts the minimality of
|b′|, so |b′| ≤ a′. Similarly, we get |b| ≤ c′. If a′ ≤ c′, choose f(x, y) = f ′(x, y) (and b = b′,
|b| ≤ a = a′ ≤ c′ = c). If a′ > c′, take f(x, y) = f ′(−y, x) = a′y2 − bxy + c′x2 and b = −b′,
|b| = |b′| < a = c′ < a′ = c. (i.e. interchange a′ and c′ and change the sign of b′). Note that
(x, y) 7→ (−y, x) induces a proper equivalence since

det

(
0 −1
1 0

)
= 1.

Step 2 We show that a primitive positive definite bqf f(x, y) = ax2 + bxy + cy2 with
0 ≤ |b| ≤ a ≤ c is properly equivalent to a reduced one.

The form f(x, y) is already reduced unless b < 0 and −b = a or a = c. But then
f ′(x, y) = ax2− bxy + cy2 is reduced and all we have to show is that f(x, y) and f ′(x, y) are
properly equivalent.
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If a = −b : A =

(
1 1
0 1

)
∈ SL(2, Z) and

f(A~x) = f(x + y, y) = a(x + y)2 − a(x + y)y + cy2 = ax2 + axy + cy2 = f ′(x, y).

If a = c : A =

(
0 −1
1 0

)
∈ SL(2, Z) and

f(B~x) = f(−y, x) = ay2 − bxy + ax2 = f ′(x, y).

Step 3 We show that two reduced forms cannot be properly equivalent.
Let f(x, y) = ax2 + bxy + cy2 with |b| ≤ a ≤ c. Since f(x, y) is positive definite, for any
integers x, y we have

f(x, y) ≥ (a− |b|+ c) min(x2, y2) (exercise!)

Therefore
f(x, y) > a− |b|+ c ≥ a whenever xy 6= 0. (9.3)

On the other hand f(x, 0) = ax2 and f(0, y) = cy2. As we have seen in Example 9.3, a
is properly represented by f(x, y) and (9.3) implies that a is the smallest nonzero value of
f(x, y). Moreover, if c > a then c is the next smallest positive value of f(x, y). (Because f
Therefore the coefficients of x2 and y2 of a reduced form are the smallest positive integers
properly represented by any equivalent form. (This observation is due to Legendre.) For
simplicity, assume f(x, y) = ax2 + bxy + cy2 is a reduced from with |b| < a < c. (The other
cases are left as exercise.) From what we discussed above, it follows that a < c < a− |b|+ c
are the smallest numbers properly represented by f(x, y).

Claim f(x, y) = a, (x, y) = 1 ⇐⇒ x = ±1, y = 0

f(x, y) = c, (x, y) = 1 ⇐⇒ x = 0, y = ±1. (9.4)

Assume that g(x, y) = a′x2 + b′xy + c′y2 is a reduced form equivalent to f(x, y). Since
f(x, y) and g(x, y) represent the same numbers and are reduced, they must have the same
coefficient of x2 by Legendre’s observation. So a = a′. On the other hand, c′ ≥ a. Assume
that c′ = a. Then, by (9.4), the equation g(x, y) = a has 4 proper solutions ±(1, 0),±(0, 1).
But the equation f(x, y) = a has only 2 proper solutions (contradiction). Hence c′ > a and
by applying again Legendre’s observation, it follows that c = c′. Since the two bqf’s have
the same discriminant, it follows that |b′| = |b|. Thus

g(x, y) = ax2 ± bxy + cy2.

It remains to show that f(x, y) = g(x, y) when we make the stronger assumption that
the two bqf’s are properly equivalent. That is, we now assume that we have

A =

(
α β
γ δ

)
∈ SL(2, Z) g(x, y) = f(αx + βy, γx + δy).
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Then
a = g(1, 0) = f(α, γ) c = g(0, 1) = f(β, δ).

Since det A = 1, we have αδ − βγ = 1, so (α, γ) = 1 and (β, δ) = 1. By (9.4), it follows that
(α, γ) = ±(1, 0) and (β, δ) = ±(0, 1). Since det A = 1, it follows that

A = ±
(

1 0
0 1

)
,

and therefore f(x, y) = g(x, y).

Note: Now we can justify the examples we gave of properly equivalent and improperly
equivalent forms. Namely, 3x2±2xy+5y2 (which we know are equivalent) are both reduced,
and therefore they cannot be properly equivalent. Thus they are improperly equivalent. On
the other hand, 2x2 ± 2xy + 3y2 are equivalent, but only 2x2 + 2xy + 3y2 is reduced. By the
proof of Theorem 9.13, the two forms properly equivalent.

From now on, all bqf’s will be primitive, positive definite and equivalence will be proper.

Definition. The class number of h(D) is the number of classes of primitive positive definite
forms of discriminant D < 0.

Note: By Theorem 9.13, h(D) is equal to the number of reduced forms of discriminant D.
A priori this number has no reason to be finite. However, suppose ax2 + bxy + cy2 to be a
reduced form of discriminant D < 0. Since |b| ≤ a we have b2 ≤ a2. Combining this with
a ≤ c, we get

−D = 4ac− b2 ≥ 4a2 − b2 ≥ 4a2 − a2 = 3a2 =⇒ 0 ≤ a ≤
√
−D

3
.

If D is fixed, then the above relation and the fact |b| ≤ a imply that there are only finitely
many choices for a and b. Moreover, each such choice fixes c since D = b2 − 4ac.
Thus there are only finitely many reduced forms of discriminant D and we have proved the
following result.

Theorem 9.14. Let D ∈ Z<0. The class number h(D) is finite and is equal to the number
of reduced forms of discriminant D.

Here are a couple of examples computed using the algorithm described above. We will need
to use some of them later on, and I might explain them in class. But it would be a good
idea to work as many of them as you can on your own.
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D h(D) reduced forms of discriminant D

−4 1 x2 + y2

−8 1 x2 + 2y2

−12 1 x2 + 3y2

−20 2 x2 + 5y2, 2x2 + 2xy + 3y2

−28 1 x2 + 7y2

−56 4 x2 + 14y2, 2x2 + 7y2, 3x2 ± 2xy + 5y2

−108 3 x2 + 27y2, 4x2 ± 2xy + 7y2

−256 4 x2 + 64y2, 4x2 + 4xy + 17y2, 5x2 ± 2xy + 13y2

We can now go back to the Descent Step in Euler’s strategy.

Theorem 9.15. Let n ∈ Z>0 and p be an odd prime such that p - n. Then

(
−n

p

)
= 1 if and

only if p is represented by one of the h(−4n) reduced forms of discriminant −4n.

Proof. This is an immediate consequence of Corollary 9.12 and Theorem 9.13.

This result completely settles the Descent Step. We just need to put it together with
the Reciprocity Step, and see what we get. But rather than looking at the case of bqf’s of
discriminant −4n, we will state a result that applies to all discriminants D < 0.

Theorem 9.16. Let D be a negative integer such that D ≡ 0, 1 (mod 4). Let χ = χD :
(Z/DZ)× → {±1} be the group homomorphism defined in Theorem 8.17 and p be an odd
prime, p - D. Then p (mod D) ∈ ker χ if and only if p is represented by one of the h(D)
reduced forms of discriminant D.

Proof. We have seen that

p (mod D) ∈ ker χ ⇐⇒
(

D

p

)
= 1.

We also know that (
D

p

)
= 1 ⇐⇒ D is a quadratic residue modulo p.

By Proposition 9.11 this is equivalent to the fact that p is represented by a primitive positive
definite form of discriminant D. The result now follows from Theorem 9.13.

This theorem tells us that there is a congruence condition p ≡ α, β, . . . (mod D) which
gives necessary and sufficient conditions for an odd prime p - D to be represented by a form
of discriminant D. Since we know how to find the reduced forms of a given discriminant and
quadratic reciprocity makes it easy to find the congruence classes α, β, . . . (mod D) such
that

(
D
p

)
= 1, we now have a complete and effective form of Euler’s strategy.
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Example 9.17. D = −4 : the only reduced form is x2 + y2. On the other hand we know
that (

−1

p

)
= 1 ⇐⇒ p ≡ 1 (mod 4).

Thus it follows immediately from Theorem 9.16 that p 6= 2 is of the form x2 +y2 if and
only if p ≡ 1 (mod 4).

In other words, now we get a two line proof of a fact that had taken all of Section 2 to
prove before.

D = −8 : again we have only one reduced form of discriminant −8, namely x2 + 2y2. And
we know that (

2

p

)
= 1 ⇐⇒ p ≡ 1, 3 (mod 8).

Theorem 9.16 implies that p 6= 2 is of the form x2 +2y2 if and only if p ≡ 1, 3 (mod 8).
I won’t remind you how long that took to prove!

D = −12 : the only reduced form is x2 +3y2 and it is easy to see find the congruence classes
for p so that

(−3
p

)
= 1.

We can go further than Fermat.

Proposition 9.18. If p is a prime, then

p = x2 + 7y2 ⇐⇒ p = 7 or p ≡ 1, 9, 11, 15, 23, 25 (mod 28).

Proof. Exercise.

Each time we made use of the fact that there is only one reduced form of discriminant
−4n, i.e. that h(−4n) = 1. Unfortunately, the list of n > 0 for which this happens is rather
short.

Theorem 9.19 (Landau). Let n be a positive integer. Then

h(−4n) = 1 ⇐⇒ n = 1, 2, 3, 4, 7.

Proof. We will follow Landau. In a nutshell, the idea is that we already know a reduced
from of discriminant −4n, namely x2 + ny2. So if we produce another one, that means that
h(−4n) > 1. We already know that h(−4) = 1, so we can assume that n > 1. If n is not a
prime power, it means that n has at least two distinct prime divisors p and q. Therefore

n = prqsm, with r, s ≥ 1 and (m, p) = (m, q) = 1.

Choose a = min(pr, qs) and c = m · max(pr, qs).Then n = ac, c > a > 1 and (a, c) = 1.
Therefore the form

ax2 + cy2
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is reduced of discriminant −4n.
If n = 2r and r ≥ 4, then

4x2 + 4xy + (2r−2 + 1)y2

is reduced (note that 4 ≤ 2r−2 + 1 since r ≥ 4) of discriminant −4n.
If n = 23, then we follow the algorithm for finding reduced forms of discriminant D =

−4 · 8 = −32. We know that

0 < a ≤
√

32

3
=⇒ 1 ≤ a ≤ 3.

If a = 3, then |b| ≤ 3. But if b = ±3, this means that we have to find c ∈ Z such that
−32 = 9 − 12c which is impossible. For b = ±2 we get −32 = 4 − 12c, so c = 3. But then
only 3x2 + 2xy + 3y2 is reduced. However this is enough for our purposes, because it shows
that h(−32) > 1. (In fact, h(−32) = 2, which is left as an exercise.)

Of the powers of 2 this leaves us with n = 2, 4. We have already seen what happens for
n = 2. The case n = 4 is left as an exercise.

If n = pr with p and odd prime, then n + 1 is even. So if n + 1 is a not a power of 2,
then n + 1 = ac with 1 < a < c and (a, c) = 1. It follows that

ax2 + 2xy + cy2

is reduced of discriminant −4n. If n + 1 = 2s and s ≥ 6, then

8x2 + 6xy + (2s−3 + 1)y2

is reduced (indeed, 8 < 2s−3 + 1 in this case) of discriminant −4n.
If s = 5, then n + 1 = 32, so n = 31 which is an odd prime. We go through our algorithm
again to find reduced forms with discriminant −4n = −124. We have

0 < a ≤
√

124

3
=⇒ 1 ≤ a ≤ 5.

Now we need to find an integer solution to the equation −124 = b2 − 4ac with |b| ≤ a ≤ c.
First note the b has to be even. If a = 5 and b = ±4 the equation becomes −124 = 16− 20c,
so c = 7. The forms

5x2 ± 4xy + 7y2

are both reduced of the given discriminant, so h(−4n) ≥ 3. (In fact we have equality, a fact
that I leave for you to prove!).
For s = 4 we get n + 1 = 16 =⇒ n = 15 which is not a prime power.
For s = 3 we get n+1 = 8 =⇒ n = 7 and we have seen in Proposition 9.18 that h(−28) = 1.
For s = 2 we get n + 1 = 4 =⇒ n = 3 and we have seen in Example 9.17 that h(−12) = 1.
For s = 1 we get back to n = 1.

Note: The case n = 4 is included in the p = x2 + y2 case since one of the x, y has to be even
and the other odd in order for p to be odd.
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9.1 Elementary genus theory

Landau’s Theorem 9.19 makes it clear that we need some new ideas for dealing with the case
h(−4n) > 1. Let us consider the following example.

Example 9.20. Take the case n = 5. First let us determine the reduced form of discriminant
D = −20. We have seen that they need to satisfy

0 ≤ |b| ≤ a ≤
√

20

3
=⇒ 0 ≤ |b| ≤ a ≤ 2,

and −20 = b2 − 4ac so b is even.

• a = 2 : then −20 = b2 − 8c.
If b = 2, then c = 3 and we get the reduced form 2x2 + 2xy + 3y2.
If b = 0, the diophantine equation has no solution c ∈ Z.

• a = 1 : then b = 0 and 20 = −4c, so c = 5. This yields the familiar x2 + 5y2.

Therefore h(−20) = 2 and the two reduced form are

2x2 + 2xy + 3y2 and x2 + 5y2.

Here Theorem 9.16 and quadratic reciprocity tell us that, if p 6= 5 is an odd prime

p ≡ 1, 3, 7, 9 (mod 20) ⇐⇒
(
−5

p

)
= 1 ⇐⇒ p = x2 + 5y2 or p = 2x2 + 2xy + 3y2.

We can see from this example that what we need is a method to separate reduced forms
of the same discriminant. The basic idea is due to Lagrange: consider the congruence classes
in (Z/DZ)× represented by a single form and group together the forms that represent the
same congruence classes. This is precisely the basic idea of genus theory.

To clarify what we mean, we look again at the case D = −20. We will plug in for x, y all
the values in Z/DZ and for each pair compute the value of the two reduced forms of genus
D. Then we throw out the pairs that give values that are not in (Z/DZ)× . To shorten our
computation, note that if both x, y are divisible by 2 or 5, then so will both x2 + 5y2 and
2x2 + 2xy + 3y2. So at least one of them has to be relatively prime to 20.
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x (mod 20) y (mod 20) x2 + 5y2 2x2 + 2xy + 3y2

0 ±1 5 (throw this out) 3 (keep this one)
0 ±3 5 (throw this out) 7 (keep this one)
0 ±7 5 (throw this out) 7 (keep this one)
0 ±9 5 (throw this out) 3 (keep this one)
±1 0 1 (keep this one) 2 (throw this out)
±3 0 9 (keep this one) 18 (throw this out)
±7 0 9 (keep this one) 18 (throw this out)
±9 0 1 (keep this one) 2 (throw this out)
1 1 6 (throw this out) 7 (keep this one)
1 2 1 (keep this one) 18 (throw this out)
...

...
...

...

Continuing this table one sees that

x2 + 5y2 represents 1, 9 in (Z/20Z)×

2x2 + 2xy + 3y2 represents 3, 7 in (Z/20Z)× (9.5)

Repeating the same procedure for D = −56, we get that

x2 + 14y2, 2x2 + 7y2 represent 1, 9, 15, 23, 25, 39 in (Z/56Z)×

3x2 ± 2xy + 5y2 represent 3, 5, 13, 19, 27, 45 in (Z/56Z)× (9.6)

Definition. We say that two primitive positive definite bqf ’s of discriminant D have the
same genus if they represent the same congruence classes in (Z/DZ)× .

Note: Since equivalent forms represent the same integers, they are in the same genus. In
particular, each genus consists of a finite number of proper classes of forms.

In (9.5), we have seen that for D = −20 there are 2 genera, each consisting of a single
class. Combining the same (9.5) with Theorem 9.16 we obtain that for an odd prime p 6= 5,

p = x2 + 5y2 ⇐⇒ p ≡ 1, 9 (mod 20)

p = 2x2 + 2xy + 3y2 ⇐⇒ p ≡ 3, 7 (mod 20) (9.7)

So we now have a proof for the first part of Euler’s Conjecture 9.1.

On the other hand, (9.6) shows that for D = −56 there are also 2 genera, but now each
genus consists of 2 classes. Combining it with Theorem 9.16 we obtain that for an odd prime
p 6= 7,

p = x2 + 14y2 or p = 2x2 + 7y2 ⇐⇒ p ≡ 1, 9, 15, 23, 25, 39 (mod 56)

p = 3x2 ± 2xy + 5y2 ⇐⇒ p ≡ 3, 5, 13, 19, 27, 45 (mod 56) (9.8)
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This proves first part of Euler’s Conjecture 9.2.
In both these cases, what made the whole thing work was the fact the the two genera

represent disjoint sets of values in (Z/DZ)× . We must show that this phenomenon holds in
general. To that end, we start with a result of Gauss.

Lemma 9.21. Given a form f(x, y) and an integer M 6= 0, the bqf f(x, y) properly represents
numbers relatively primes to M.

Proof. Let f(x, y) = ax2 + bxy + cy2. We know that (a, b, c) = 1 – since all our forms are
primitive – so no prime can divide all of them. Let p be an arbitrary prime. There are three
possibilities.

• p | a and p | c : then p - b. Therefore if p - x and p - y, then p - f(x, y).

• p - a : choose x, y such that p - x and p | y. Then p - f(x, y).

• p - c : choose x, y such that p | x and p - y. Then p - f(x, y).

If M = ±1, the result is obvious. If not, then M = ±pa1
1 . . . par

r with p1, . . . , pr distinct primes.
By the Chinese Remainder Theorem we can choose x, y subject to the above conditions for
each of the pi, 1 ≤ i ≤ r. Then pi - f(x, y) for all i and therefore m = f(x, y) is relatively
prime to M. The result follows since, by Lemma 9.4, m = d2m′ for some m′ that is properly
represented by f(x, y).

Definition. For a negative integer D ≡ 0, 1 (mod 4) the principal form of discriminant D
is

x2 − D

4
y2 if D ≡ 0 (mod 4)

x2 + xy +
1−D

4
y2 if D ≡ 1 (mod 4).

Note: These forms have indeed discriminant D and they are reduced.

Proposition 9.22. Given a negative integer D ≡ 0, 1 (mod 4), denote by χ = χD :
(Z/DZ)× → {±1} the group homomorphism defined in Theorem 8.17. Let f(x, y) be a
bqf of discriminant D.

(i) The values in (Z/DZ)× represented by the principal form of discriminant D form a
subgroup H ⊂ ker χ ⊂ (Z/DZ)× .

(ii) The values in (Z/DZ)× represented by f(x, y) form a coset of H in ker χ.

Note: Since cosets are disjoint, this says that different genera represent disjoint sets of
values in (Z/DZ)× . It also means that each genus corresponds to an element of the quotient
group (ker χ)/H.
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Proof. We start by proving that if a number (m, D) = 1 is represented by a form g(x, y) of
discriminant D, then [m] ∈ ker χ. By Lemma 9.4, m = d2m′ where m′ is properly represented
by g(x, y). Then

χ([m]) = χ([d2m′]) = χ([d])2χ([m′]) = χ([m′]).

On the other hand, Proposition 9.11 implies that D is a quadratic residue modulo m′, so
there exist integers b, c ∈ Z such that D = b2− cm′. Note that (b, m′) = 1. If m′ is odd, then

χ([m]) = χ([m′]) =

(
D

m′

)
=

(
b2 − cm′

m′

)
=

(
b2

m′

)
=

(
b

m′

)2

= 1.

If m′ is even, then D must be odd and Lemma 9.8 implies that m′ is (properly) represented
by a form m′x2 + b′xy + c′y2 of discriminant D. Hence

D = (b′)2 − 4m′c′ ≡ (b′)2 (mod 8).

But b′ has to be odd, and the only odd square modulo 8 is 1. Hence D ≡ 1 (mod 8), and by
a homework exercise, this implies that χ([2]) = 1. Therefore, if we write m′ = 2am′′ we have

χ([m]) = χ([m′]) = χ([2])aχ([m′′]) = χ([m′′]) = 1 (as before).

Now that our claim is proved, let us go back to the first statement of the Proposition.
By definition

H = {[m]; m is represented by the principal form of discriminant D}.

The above claim shows that the set H is a subset of ker χ. We have to show that H contains
the identity (and this is trivial since the principal form evaluated at (1, 0) yields precisely 1)
and is closed under multiplication.

• When D = −4n, the principal form is x2 + ny2. But we know that

(x2 + ny2)(u2 + nv2) = (xu + nyv)2 + n(xv − yu)2.

Therefore the product of two representable integers is also representable.

• When D = 1− 4n, the principal form is x2 + xy + ny2. We have

4(x2 + xy + ny2) ≡ 4x2 + 4xy + y2 (mod D) ≡ (2x + y)2 (mod D). (9.9)

Let H ′ = {[m]2; [m] ∈ (Z/DZ)×} the subgroup of squares in (Z/DZ)× . Then (9.9)
shows that H = H ′ and therefore H is closed under multiplication.

For the second statement of the Proposition, we again treat the two cases separately.
If D = −4n, then taking M = 4n in Lemma 9.21 we obtain that f(x, y) properly represents
some integer a relatively prime to D. By Lemma 9.8, we get that f(x, y) is properly equivalent
to a bqf of the form ax2 + b′xy + cy2 of discriminant D. Since representability is stable under
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equivalence of forms, we can assume that f(x, y) = ax2 + b′xy + cy2.
But −4n = D = (b′)2 − 4ac, so b′ is even. Therefore

f(x, y) = ax2 + 2bxy + cy2 and n = ac− b2.

Therefore
af(x, y) = (ax + by)2 + ny2.

Since (a, 4n) = 1 it follows that the values of f(x, y) in (Z/4nZ)× lie in the coset [a]−1H.
Conversely, if [m] ∈ [a]−1H, then [ac] ∈ H, so there exist integers u, v such that

am ≡ u2 + nv2 (mod 4n).

Choose x, y ∈ Z such that {
ax + by ≡ u (mod 4n)

y ≡ v (mod 4n).

Note that we can do this since (a, 4n) = 1. Then

af(x, y) = (ax + by)2 + ny2 ≡ u2 + nv2 (mod D) ≡ am (mod D).

Again we use the fact that (a, D) = 1 to obtain

f(x, y) ≡ m (mod D) =⇒ [m] is represented by f(x, y).

The case D ≡ 1 (mod 4) is similar (exercise!) and the result is proved.

Definition. With the notation from Proposition 9.22, let H ′ be a coset of H in ker χ. The
genus of the coset H ′ consists of all the forms of discriminant D that represent the values of
H ′ modulo D.
The genus containing the principal form is called the principal genus.

We have proved the following result.

Theorem 9.23. Let D < 0 be an integer such that D ≡ 0, 1 (mod 4) and p - D be an odd
prime. With the notation from Proposition 9.22, let H ′ be a coset of H in ker χ. Then [p] = p
(mod D) ∈ H ′ if and only if p is represented by a reduced form of discriminant D in the
genus of H ′.

This is the main result of our elementary genus theory. It generalizes (9.7) and (9.8), and
it shows that there are always congruence conditions which characterize the primes that can
be represented by some bqf in a given genus.

For us, the most interesting situation regards the principal genus, since for D = −4n the
principal form is x2 + ny2.
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Corollary 9.24. Let n ∈ Z> 0 and p - n and odd prime. Then p is represented by a form
of discriminant −4n in the principal genus if and only if there exist an integer β such that

p ≡ β2 or β2 + n (mod 4n).

Proof. If y is even, then x2 + ny2 ≡ x2 (mod 4n).
On the other hand, if y is odd, then x2 + ny2 ≡ x2 + n (mod 4n).
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