MATH 20C Lecture 22 - Monday, November 15, 2010

Double integrals

Recall integral in 1-variable calculus: $\int_{a}^{b} f(x) d x=$ area below graph $y=f(x)$ over $[a, b]$.
Now: double integral $\iint_{R} f(x, y) d A=$ volume below graph $z=f(x, y)$ over region R in the $x y$ plane.

Cut R into small pieces $\Delta A_{i} \Longrightarrow$ the volume is approximately $\sum f\left(x_{i}, y_{i}\right) \Delta A_{i}$. Limit as $\Delta A \rightarrow 0$ gives $\iint f(x, y) d A$. (demo: potato cut into french fries)

How to compute the integral? By taking slices: $S(x)=$ area of the slice by a plane parallel to $y z$-plane (demo: potato chips); then

$$
\text { volume }=\int_{x_{\min }}^{x_{\max }} S(x) d x \quad \text { and for given } x, \quad S(x)=\int_{y_{\min }(x)}^{y_{\max }(x)} f(x, y) d y
$$

BEWARE! The limits of integration in y depend on x !
In the inner integral, x is a fixed parameter, y is the integration variable. We get an iterated integral.
Example $1 f(x, y)=1-x^{2}-y^{2}$ and $R: 0 \leq x \leq 1,0 \leq y \leq 1$. (Shown computer graphics.)

$$
\int_{0}^{1} \int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y d x
$$

How to evaluate?

1) inner integral (x is constant):

$$
\int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y=\left[y-x^{2} y-\frac{y^{3}}{3}\right]_{y=0}^{y=1}=\left(1-x^{2}-\frac{1}{3}\right)-0=\frac{2}{3}-x^{2} .
$$

2)outer integral: $\int_{0}^{1}\left(\frac{2}{3}-x^{2}\right) d x=\left[\frac{2}{3} x-\frac{x^{3}}{3}\right]_{x=0}^{x=1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$.

Note: $d A=d y d x=d x d y$, limit of $\Delta A=\Delta y \Delta x=\Delta x \Delta y$ for small rectangles.
Example 2 Same function over the quarter-disk $R: x^{2}+y^{2} \leq 1,0 \leq x \leq 1,0 \leq y \leq 1$. (computes volume between $x y$-plane and paraboloid in the first octant).
How to find the bounds of integration? Fix x constant and look at the slice of R parallel to y-axis. Bounds from $y=0$ to $y=\sqrt{1-x^{2}}$ in the inner integral. For the outer integral: first slice is at $x=0$, last slice is at $x=1$. So we get

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y d x
$$

Note that the inner bounds depend on the outer variable x; the outer bounds are constants!

1) inner integral (x is constant):

$$
\int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y=\left[\left(1-x^{2}\right) y-\frac{y^{3}}{3}\right]_{y=0}^{y=\sqrt{1-x^{2}}}=\left(1-x^{2}\right)^{3 / 2}-\frac{\left(1-x^{2}\right)^{3 / 2}}{3}=\frac{1}{3}\left(1-x^{2}\right)^{3 / 2} .
$$

2)outer integral:

$$
\int_{0}^{1} \frac{1}{3}\left(1-x^{2}\right)^{3 / 2} d x=\ldots(\text { trig substitution } x=\sin \theta, \text { double angle formulas }) \ldots=\frac{\pi}{8} .
$$

This is complicated! It will be easier to do it in polar coordinates.

MATH 20C Lecture 23 - Wednesday, November 17, 2010

Exchanging the order of integration

$\int_{0}^{1} \int_{0}^{2} f(x, y) d x d y=\int_{0}^{2} \int_{0}^{1} f(x, y) d y d x$, since region is a rectangle (drawn picture). In general, more complicated!
Example: $\int_{0}^{1} \int_{x}^{\sqrt{x}} \frac{e^{y}}{y} d y d x$ (Inner integral has no formula.)
To exchange order: 1) draw the region (here: $x \leq y \leq \sqrt{x}$ for $0 \leq x \leq 1$ - picture drawn on blackboard).
2) figure out bounds in other direction: fixing a value of y, what are the bounds for x ? H : left border is $x=y^{2}$, right is $x=y$; first slice is $y=0$, last slice is $y=1$, so we get

$$
\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} \frac{e^{y}}{y} d x d y=\int_{0}^{1} \frac{e^{y}}{y}\left(y-y^{2}\right) d y=\int_{0}^{1} e^{y}(1-y) d y \stackrel{\mathrm{parts}}{=}\left[e^{y}(1-y)\right]_{y=0}^{y=1}+\int_{0}^{1} e^{y} d y=e-2 .
$$

Applications

Computing volumes Example: Problem 55, section 15.2. Find the volume of the region enclosed by $z=1-y^{2}$ and $z=y^{2}-1$ for $0 \leq x \leq 2$.
Both surfaces look like parabola-shaped tunnels along the x-axis. They intersect at $1-y^{2}=$ $y^{2}-1 \Longrightarrow y= \pm 1$. So $z=0$ and x can be anything, therefore lines parallel to the x-axis. I tried to draw a picture, but I got it rotated by 90°. To be corrected next time. Get volume by integrating the difference $z_{\text {top }}-z_{\text {bottom }}$, i.e. take the volume under the top surface and subtract the volume under the bottom surface (same idea as in 1 variable).

$$
\begin{aligned}
\pm \mathrm{vol}=\int_{0}^{2} \int_{-1}^{1}\left(\left(1-y^{2}\right)-\left(y^{2}-1\right)\right) d y d x= & 2 \int_{0}^{2} \int_{-1}^{1}\left(1-y^{2}\right) d y d x \\
& =2 \int_{0}^{2}\left[y-\frac{y^{3}}{3}\right]_{y=-1}^{y=1} d x=2 \int_{0}^{2} \frac{4}{3} d x=\frac{16}{3} .
\end{aligned}
$$

Since volume is always positive, our answer is $16 / 3$.
Area of a plane region R is

$$
\operatorname{area}(R)=\iint_{R} 1 d A
$$

Mass the total mass of a flat object in the shape of a region R with density given by $\rho(x, y)$ is

$$
\text { Mass }=\iint_{R} \rho(x, y) d A .
$$

Average the average value of a function $f(x, y)$ over the plane region R is

$$
\bar{f}=\frac{1}{\operatorname{area}(R)}=\iint_{R} f(x, y) d A .
$$

Weighted average of the function $f(x, y)$ over the plane region R with density $\rho(x, y)$ is

$$
\frac{1}{\text { Mass }} \iint_{R} f(x, y) \rho(x, y) d A
$$

Center of mass of a plate with density $\rho(x, y)$ is the point with coordinates (\bar{x}, \bar{y}) given by weighted average

$$
\begin{aligned}
& \bar{x}=\frac{1}{\operatorname{Mass}} \iint_{R} x \rho(x, y) d A, \\
& \bar{y}=\frac{1}{\operatorname{Mass}} \iint_{R} y \rho(x, y) d A .
\end{aligned}
$$

Example: Problem 57, section 15.2. A plate in the shape of the region bounded by $y=x^{-1}$ and $y=0$ for $1 \leq x l e q 4$ has mass density $\rho(x, y)=y / x$. Calculate the total mass of the plate.

First, draw region. Then set limits of integration.

$$
\text { Mass }=\int_{0}^{4} \int_{0}^{x^{-1}} \frac{y}{x} d y d x=\int_{0}^{4}\left[\frac{y^{2}}{2 x}\right]_{y=0}^{y=x^{-1}} d x=\frac{1}{2} \int_{0}^{4} x^{-3} d x=-\frac{1}{4}\left[\frac{1}{x^{2}}\right]_{x=0}^{x=4}=\frac{15}{64} .
$$

MATH 20C Lecture 24 - Friday, November 19, 2010

I made the correction for the drawing of the region in Problem 55 that was discussed last time.

Triple Integrals

$$
\iiint_{R} f(x, y, z) d V \quad(R \text { is a solid in space })
$$

Note: $\Delta V=\operatorname{area}($ base $) \cdot$ height $=\Delta A \Delta z$, so $d V=d A d z=d x d y d z$ or any permutation of the three.
Example $1 R$: the region between paraboloids $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}$. (picture drawn)
The volume of this region is $\iiint_{R} 1 d V=\iint_{D}\left[\int_{x^{2}+y^{2}}^{4-x^{2}} d z\right] d A$, where D is the shadow in the $x y$-plane of the region R.

To set up bounds, (1) for fixed (x, y) find bounds for z : here lower limit is $z=x^{2}+y^{2}$, upper limit is $z=4-x^{2}-y^{2}$; (2) find the shadow of R onto the $x y$-plane, i.e. set of values of
(x, y) above which region lies. Here: R is widest at intersection of paraboloids, which is in plane $z=2$; general method: for which (x, y) is z on top surface $\geq z$ on bottom surface? Answer: when $4-x^{2}-y^{2} \geq x^{2}+y^{2}$, i.e. $x^{2}+y^{2} \leq 2$. So we integrate over a disk of radius $\sqrt{2}$ in the $x y$-plane. By usual method to set up double integrals, we finally get

$$
\operatorname{vol}(R)=\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z d y d x
$$

Actual evaluation would be easier using polar coordinates.

Example 2 (based on Example 4 from Section 15.3 in the book) Let R be the region in the first octant (i.e. $x \leq 0, y \leq 0, z \leq 0$) bounded by

$$
z=4-y^{2}, \quad y=2 x, \quad z=0, \quad x=0 .
$$

Consider $f(x, y, z)=x y z$. Set up the integral $\iiint_{R} f(x, y, z) d V$, in two different ways.
Showed picture of R and its projections on the various coordinate planes.
Setup \#1 Integrate first with respect to z, then with respect to y.
The surface $z=4-y^{2}$ intersects the first quadrant of the $x y$-plane in the line $y=2$. The projection of the $x y$-plane is a triangle bounded by the y-axis and the lines $y=2$ and $y=2 x$. For each point (x, y) the vertical segment above it goes from $z=0$ to $z=4-y^{2}$. Get

$$
\int_{0}^{1} \int_{2 x}^{2} \int_{0}^{4-y^{2}} x y z d z d y d x
$$

Setup \#2 Integrate first with respect to x, then with respect to z.
The projection onto the $y z$-plane is bounded by the y-axis, the z-axis and the parabola $z=4-y^{2}$. For each point (y, z) the segment in the direction of the x-axis goes from $x=0$ to $x=y / 2$. Get

$$
\int_{0}^{2} \int_{0}^{4-y^{2}} \int_{0}^{y / 2} x y z d x d z d y
$$

Applications

Mass the total mass of a solid R with density given by $\rho(x, y, z)$ is

$$
\operatorname{Mass}(\mathrm{R})=\iiint_{R} \rho(x, y, z) d V
$$

Average the average value of a function $f(x, y, z)$ over the a solid R is

$$
\bar{f}=\frac{1}{\operatorname{vol}(R)}=\iiint_{R} f(x, y, z) d V .
$$

Weighted average of the function $f(x, y, z)$ over the solid R with density $\rho(x, y, z)$ is

$$
\frac{1}{\operatorname{Mass}(R)} \iiint_{R} f(x, y, z) \rho(x, y, z) d V
$$

Center of mass of a solid with density $\rho(x, y, z)$ is the point with coordinates $(\bar{x}, \bar{y}, \bar{z})$ given by weighted average

$$
\begin{aligned}
\bar{x} & =\frac{1}{\operatorname{Mass}(R)} \iiint_{R} x \rho(x, y, z) d V, \\
\bar{y} & =\frac{1}{\operatorname{Mass}(R)} \iiint_{R} y \rho(x, y, z) d V, \\
\bar{z} & =\frac{1}{\operatorname{Mass}(R)} \iiint_{R} z \rho(x, y, z) d V .
\end{aligned}
$$

Example: Did example 6, section 15.3. Let R be a solid in the shape of the first octant of the unit ball. Assume the density is given by $\rho(x, y, z)=y$. Find the z-coordinate of the center of mass of R. Solution First drawn picture of R. The unit sphere has equation $x^{2}+y^{2}+z^{2}=1$. It intersects the $x y$-plane in the unit circle $x^{2}+y^{2}=1$. We want only the parts with $x \leq 0, y \leq 0, z \leq 0$.

$$
\begin{aligned}
\bar{z} & =\iiint_{R} z \rho(x, y, z) d V=\iint_{\text {quarter unit disk }}\left[\int_{0}^{\sqrt{1-x^{2}-y^{2}}} y z d z\right] d A \\
& =\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} y z d z d y d x=\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left[y \frac{z^{2}}{2}\right]_{z=0}^{z=\sqrt{1-x^{2}-y^{2}}} d y d x=\ldots=\frac{1}{15} .
\end{aligned}
$$

