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We are asked to evaluate
∫∫∫
W y dV , where W is the domain bounded

by the elliptic cylinder x2

4 + y2

9 = 1, and the sphere x2 + y2 + z2 = 16, all in
the first octant. So this means x, y, z ≥ 0.

So here is my solution. It might not be the easiest. Here is a list of other
things to try:

• Try changing the order of integration. Maybe integrate with respect
to y first? Be careful, though! You need to figure out the the bounds
again.

• After integrating with respect to z, try polar coordinates for the xy
plane. Careful! Here dA = rdrdθ.! Hint: the bounds of integration
are 0 ≤ θ ≤ π/2, and 0 ≤ r ≤ (cos2 θ/4 + sin2 θ/9)−1/2. Think about
why this is true.

So here it goes. Warning: Work out the details for yourself! For two
reasons: (1) I may be wrong (it has been known to happen). (2) You won’t
learn anything if you just write down my solution. . .

Lets describe the region in the xy plane first. We choose the outer limits
of integration to represent x going from 0 to 2. Now pick some x between 0
and 2. Given that x, we want to figure out what y runs between. The lowe
limit for y is the easy part: it has to be zero. What about the upper limit?

Well if we solve x2

4 + y2

9 = 1 for y, then we will get the bound on y given

some x. Solving for y gives y = ±3
√

1− x2

4 . But we know that we want to

be in the first octant, so y ≥ 0. So we want the positive radical. So given

an x, y goes from 0 to 3
√

1− x2

4 .

So this is what is going on in the xy plane. We now need to extend in
the z axis. So ask: given some x and y in the region we just defined above,
what does z go between? Again, since we are in the first octant, the lower
limit of z is 0. And like before the upper limit of z comes from solving
x2 + y2 + z2 = 1 in terms of z. This is z = ±

√
16− x2 − y2. Again, since

we are in the first octant, we want the positive root. So z runs from 0 to√
16− x2 − y2.
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Putting this all together:

∫∫∫
W
y dV =

∫ 2

0

∫ 3

√
1−x2

4

0

∫ √16−x2−y2

0
y dzdydx (1)

So we start with the inner most integral, which says to integrate y with
respect to z. But y is a constant with respect to z, so its antiderivative is
yz. So then (1) is equal to:

∫ 2

0

∫ 3

√
1−x2

4

0
y
√

16− x2 − y2 dydx (2)

Lets think about the inner integral.∫
y
√

16− x2 − y2dy (3)

We can do this by u substitution. Let u = 16− x2 − y2. Then du = −2ydy.
Remember that we are treating x like a constant. So then∫

y
√

16− x2 − y2 dy = −1

3
(16− x2 − y2)3/2 (4)

This is just the antiderivative. We need to evaluate it at y = 3
√

1− x2

4 , and

y = 0 and take their difference. So we end up with (1) equals

−1

3

∫ 2

0


16− x2 −

(
3

√
1− x2

4

)2
3/2

− (16− x2)3/2

 dx (5)

Which simplifies to:

−1

3

∫ 2

0

[(
7− 13x2

4

)3/2

− (16− x2)3/2
]
dx (6)

And this can be rewritten

64

3

∫ 2

0

(
1− 1

16
x2
)3/2

dx− 73/2

3

∫ 2

0

(
1− 13

28
x2
)3/2

dx (7)

At this point, the only thing left to do is figure out what the antiderivative
of
∫

(1 − ax2)3/2 dx is. Lets make a substitution. Say that x = 1/
√
a sin θ.

Then dx = 1/
√
a cos θ. So∫

(1− ax2)3/2 dx = 1/
√
a

∫
cos4 θ dθ (8)
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And we have tables to tell us what the integral of cos4 θ is. Apparantly:∫
cos4 θ dθ =

1

32
(12θ + 8 sin(2θ) + sin(4θ)) (9)

So now we are basically done. All that remains is to evaluate (7) using
the antiderivative we just discovered. Remember to be careful to change
the bounds of integration, since the above equation is in terms of θ, but
we need it to be in terms of x. Recall that the substitution we used was
x = 1/

√
a sin θ.
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