Definitions

Group: a set G endowed with an operation $*: G \times G \to G$ that has the following properties.

- well-defined: $a * b \in G$ for all $a, b \in G$;
- associativity: a * (b * c) = (a * b) * c
- unit: there exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$;
- inverses: for every $a \in G$ there exists an element $b \in G$ such that a * b = b * a = e (denoted $b = a^{-1}$).

Abelian (commutative) group: a group (G, *) with the property that a * b = b * a for all $a, b \in G$.

Subgroup of a group (G, *): a subset $H \subset G$ such that (H, *) is a group (same operation as G).

Cyclic subgroup generated by an element $a : \langle a \rangle = \{a^n; n \in \mathbb{Z}\}$. This is the smallest subgroup that contains a.

Cyclic group: A group that is generated by just one of its elements.

Order of a group: the number of elements in that group. Notation: |G|.

Order of an element: the number of elements in the subgroup generated by that element;

$$|a| = |\langle a \rangle| = \begin{cases} \min\{n \ge 1; a^n = e\} & \text{if such a power exists;} \\ \infty & \text{otherwise (i.e. } a^n \ne e \text{ for all } n \ge 1) \end{cases}$$

Centralizer of an element *a*: $C(a) = \{b \in G; a * b = b * a\}$ (it is subgroup of *G*).

Center of a group G: $Z(G) = \{b \in G; b * x = x * b \text{ for all } x \in G\}$ (it is subgroup of G).

Theorems

1. Subgroup tests for a nonempty subset H of a group (G, *)

One-step test: $a, b \in H \implies a * b^{-1} \in H$ **Two-step test:** $a, b \in H \implies a * b \in H$ and $a \in H \implies a^{-1} \in H$

2. If
$$|a| < \infty$$
, then $|a^k| = \frac{|a|}{\gcd(k, |a|)}$.

- 3. If $|a| = \infty$ and $k \neq 0$, then $|a^k| = \infty$.
- 4. Every cyclic group is abelian. Therefore if a group is not abelian, it cannot possibly be cyclic.
- 5. However, even a nonabelian group has cyclic subgroups, and it can have other abelian subgroups. For instance, the center of G is an abelian subgroup of G.
- 6. An element a generates a finite group $G \Leftrightarrow |a| = |G|$.
- 7. The structure of a cyclic group $G = \langle a \rangle$ of order n
 - every subgroup of G is cyclic
 - the order of every subgroup divides |G|
 - the order of every element of G divides the order of the group
 - for every divisor d of n there exists a unique subgroup H of G with |H| = d; namely H is the cyclic subgroup generated by $a^{n/d}$
 - for every divisor d of n (including n), there are exactly $\varphi(d)$ elements of order d
 - if $k \nmid n$, there are no elements in G of order k

Examples of groups

- 1. \mathbb{Q}, \mathbb{R} are groups under addition. $\mathbb{R}^*, \mathbb{Q}^*, \mathbb{R}^*_+, \mathbb{Q}^*_+$ are groups under multiplication.
- 2. \mathbb{Z} is a group with +. It is the quintessential example of an infinite cyclic group.
 - generated by 1 and -1; that is, $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$
 - all its subgroups are cyclic, generated by nonnegative integers; they are of the form $\langle n \rangle = n\mathbb{Z}$
 - $m \in \langle n \rangle \Leftrightarrow m$ is a multiple of n
- 3. Z_n is group under addition modulo n. It is the quintessential example of a cyclic group of order n.
 - generated by 1
 - it is in fact generated by all k with gcd(k, n) = 1; these are all its generators
 - its subgroups are of the form $\langle d \rangle$ where d|n; and $|\langle d \rangle| = |d| = n/d$.
 - it has $\varphi(d)$ elements of order d|n and no elements of any order that does not divide n
 - the one and only subgroup of order d|n of G has exactly $\varphi(d)$ generators, namely the elements of G of order d
- 4. $U(n) = \{1 \le k \le n; \gcd(k, n) = 1\}$ is a group under multiplication modulo n.
 - It has order $\varphi(n) = \varphi(p_1^{c_1})\varphi(p_2^{c_2})\dots\varphi(p_r^{c_r})$, if $n = p_1^{c_1}\dots p_r^{c_r}$.
 - Recall that φ is called Euler's phi function and that $\varphi(p^c) = p^{c-1}(p-1)$.
 - The group U(n) is abelian, but not necessarily cyclic. (E.g. U(8) is not cyclic.)
 - It is NOT a subgroup of Z_n since they don't have the same operation.
- 5. D_n is the group of symmetries of the regular *n*-sided polygon.
 - Its elements are transformations of the 2-dimensional real plane into itself that leave the polygon in the same position in the plane. So they are function $\mathbb{R}^2 \to \mathbb{R}^2$ that preserve a regular *n*-sided polygon centered at the origin.
 - It has 2n elements: n rotations $(R_0, R_{2\pi/n}, \ldots, R_{2(n-1)\pi/n})$ and n flips across the symmetry axes of the polygon.
 - It is not abelian.
 - Rotation \circ flip = (another) flip, flip \circ rotation = (yet another) flip, flip \circ flip = rotation
 - The elements of D_n can be expressed as 2×2 real matrices.
- 6. $\operatorname{GL}(2, F)$ the group of 2×2 invertible matrices with entries from $F = \mathbb{Q}, \mathbb{R}, \mathbb{Z}$ or Z_p (p is a prime). This is a group under matrix multiplication (all arithmetic is done in F, so modulo p in case of Z_p).
 - Saying that a matrix is invertible is the same as saying that its determinant has an inverse in F. That means the determinant is $\neq 0$ if $F = \mathbb{Q}, \mathbb{R}, \mathbb{Z}_p$. But when $F = \mathbb{Z}$ this amounts to the determinant being ± 1 .
 - It is not abelian.
 - Its center is $\{\lambda I; \lambda \in F\}$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 7. SL(2, F) is the group of 2×2 matrices with entries from $F = \mathbb{Q}, \mathbb{R}, \mathbb{Z}$ or Z_p (p is a prime) and determinant 1. This is a group under matrix multiplication (all arithmetic is done in F, so modulo p in case of Z_p).
 - It is not abelian.
 - It is a subgroup of GL(2, F).