Definitions

Group: a set G endowed with an operation $*: G \times G \rightarrow G$ that has the following properties.

- well-defined: $a * b \in G$ for all $a, b \in G$;
- associativity: $a *(b * c)=(a * b) * c$
- unit: there exists an element $e \in G$ such that $a * e=e * a=a$ for all $a \in G$;
- inverses: for every $a \in G$ there exists an element $b \in G$ such that $a * b=b * a=e$ (denoted $\left.b=a^{-1}\right)$.

Abelian (commutative) group: a group $(G, *)$ with the property that $a * b=b * a$ for all $a, b \in G$.
Subgroup of a group $(G, *)$: a subset $H \subset G$ such that $(H, *)$ is a group (same operation as G).
Cyclic subgroup generated by an element $a:\langle a\rangle=\left\{a^{n} ; n \in \mathbb{Z}\right\}$. This is the smallest subgroup that contains a.

Cyclic group: A group that is generated by just one of its elements.
Order of a group: the number of elements in that group. Notation: $|G|$.
Order of an element: the number of elements in the subgroup generated by that element;

$$
|a|=|\langle a\rangle|= \begin{cases}\min \left\{n \geq 1 ; a^{n}=e\right\} & \text { if such a power exists; } \\ \infty & \text { otherwise (i.e. } a^{n} \neq e \text { for all } n \geq 1 \text {) }\end{cases}
$$

Centralizer of an element $a: C(a)=\{b \in G ; a * b=b * a\}$ (it is subgroup of G).
Center of a group $G: Z(G)=\{b \in G ; b * x=x * b$ for all $x \in G\}$ (it is subgroup of G).

Theorems

1. Subgroup tests for a nonempty subset H of a group $(G, *)$

One-step test: $a, b \in H \Longrightarrow a * b^{-1} \in H$
Two-step test: $a, b \in H \Longrightarrow a * b \in H$ and $a \in H \Longrightarrow a^{-1} \in H$
2. If $|a|<\infty$, then $\left|a^{k}\right|=\frac{|a|}{\operatorname{gcd}(k,|a|)}$.
3. If $|a|=\infty$ and $k \neq 0$, then $\left|a^{k}\right|=\infty$.
4. Every cyclic group is abelian. Therefore if a group is not abelian, it cannot possibly be cyclic.
5. However, even a nonabelian group has cyclic subgroups, and it can have other abelian subgroups. For instance, the center of G is an abelian subgroup of G.
6. An element a generates a finite group $G \Leftrightarrow|a|=|G|$.
7. The structure of a cyclic group $G=\langle a\rangle$ of order n

- every subgroup of G is cyclic
- the order of every subgroup divides $|G|$
- the order of every element of G divides the order of the group
- for every divisor d of n there exists a unique subgroup H of G with $|H|=d$; namely H is the cyclic subgroup generated by $a^{n / d}$
- for every divisor d of n (including n), there are exactly $\varphi(d)$ elements of order d
- if $k \nmid n$, there are no elements in G of order k

Examples of groups

1. \mathbb{Q}, \mathbb{R} are groups under addition. $\mathbb{R}^{*}, \mathbb{Q}^{*}, \mathbb{R}_{+}^{*}, \mathbb{Q}_{+}^{*}$ are groups under multiplication.
2. \mathbb{Z} is a group with + . It is the quintessential example of an infinite cyclic group.

- generated by 1 and -1 ; that is, $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$
- all its subgroups are cyclic, generated by nonnegative integers; they are of the form $\langle n\rangle=n \mathbb{Z}$
- $m \in\langle n\rangle \Leftrightarrow m$ is a multiple of n

3. Z_{n} is group under addition modulo n. It is the quintessential example of a cyclic group of order n.

- generated by 1
- it is in fact generated by all k with $\operatorname{gcd}(k, n)=1$; these are all its generators
- its subgroups are of the form $\langle d\rangle$ where $d \mid n$; and $|\langle d\rangle|=|d|=n / d$.
- it has $\varphi(d)$ elements of order $d \mid n$ and no elements of any order that does not divide n
- the one and only subgroup of order $d \mid n$ of G has exactly $\varphi(d)$ generators, namely the elements of G of order d

4. $U(n)=\{1 \leq k \leq n ; \operatorname{gcd}(k, n)=1\}$ is a group under multiplication modulo n.

- It has order $\varphi(n)=\varphi\left(p_{1}^{c_{1}}\right) \varphi\left(p_{2}^{c_{2}}\right) \ldots \varphi\left(p_{r}^{c_{r}}\right)$, if $n=p_{1}^{c_{1}} \ldots p_{r}^{c_{r}}$.
- Recall that φ is called Euler's phi function and that $\varphi\left(p^{c}\right)=p^{c-1}(p-1)$.
- The group $U(n)$ is abelian, but not necessarily cyclic. (E.g. $U(8)$ is not cyclic.)
- It is NOT a subgroup of Z_{n} since they don't have the same operation.

5. D_{n} is the group of symmetries of the regular n-sided polygon.

- Its elements are transformations of the 2-dimensional real plane into itself that leave the polygon in the same position in the plane. So they are function $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that preserve a regular n-sided polygon centered at the origin.
- It has $2 n$ elements: n rotations $\left(R_{0}, R_{2 \pi / n}, \ldots, R_{2(n-1) \pi / n}\right)$ and n flips across the symmetry axes of the polygon.
- It is not abelian.
- Rotation \circ flip $=($ another $)$ flip, flip \circ rotation $=($ yet another $)$ flip, flip \circ flip $=$ rotation
- The elements of D_{n} can be expressed as 2×2 real matrices.

6. $\mathrm{GL}(2, F)$ the group of 2×2 invertible matrices with entries from $F=\mathbb{Q}, \mathbb{R}, \mathbb{Z}$ or Z_{p} (p is a prime). This is a group under matrix multiplication (all arithmetic is done in F, so modulo p in case of Z_{p}).

- Saying that a matrix is invertible is the same as saying that its determinant has an inverse in F. That means the determinant is $\neq 0$ if $F=\mathbb{Q}, \mathbb{R}, Z_{p}$. But when $F=\mathbb{Z}$ this amounts to the determinant being ± 1.
- It is not abelian.
- Its center is $\{\lambda I ; \lambda \in F\}$, where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

7. $\mathrm{SL}(2, F)$ is the group of 2×2 matrices with entries from $F=\mathbb{Q}, \mathbb{R}, \mathbb{Z}$ or Z_{p} (p is a prime) and determinant 1. This is a group under matrix multiplication (all arithmetic is done in F, so modulo p in case of Z_{p}).

- It is not abelian.
- It is a subgroup of $\mathrm{GL}(2, F)$.

