Name:	PID:	
	Discussion Section:	

Instructions

- 1. Write your Name, PID, Section, and Exam Version on the front of your Blue Book.
- 2. No calculators or other electronic devices are allowed during this exam.
- 3. You may use one page of notes, but no books or other assistance during this exam.
- 4. Read each question carefully, and answer each question completely.
- 5. Write your solutions clearly in your Blue Book.
 - (a) Carefully indicate the number and letter of each question and question part.
 - (b) Present your answers in the same order they appear in the exam.
 - (c) Start each problem on a new page.
- 6. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 7. Turn in your exam paper with your Blue Book.

DO NOT TURN OVER UNTIL INSTRUCTED TO DO SO

Question Zero:

0. Carefully read and complete the instructions at the top of this exam sheet and any additional instructions written on the chalkboard during the exam.

(1)

- 1. Let $\vec{v} = 4\vec{i} + 3\vec{j} 2\vec{k}$ and $\vec{w} = 2\vec{i} + \vec{j} \vec{k}$. (9)
 - (a) Compute the angle between \vec{v} and \vec{w} .
 - (b) Find a unit vector that is orthogonal to both \vec{v} and \vec{w} .
 - (c) If \vec{u} is a unit vector such that $\vec{u} \cdot \vec{w} = 2$, compute $||\vec{u} \vec{w}||$.
- 2. Consider the path $\vec{c}(t) = \langle \cos(2t), 9, e^{-2t} \rangle$. (10)
 - (a) Find the equation for the tangent line to the curve at t = 0.
 - (b) Set up an integral that gives the length of the curve traced out by the path $\vec{c}(t)$ between t=a and t=b. (Do not evaluate the integral.)
- 3. Let $f(x, y, z) = xy + \frac{x^2}{y} e^{z^3 1}$ and let P be the point (2, 2, 1). (10)
 - (a) Find the maximum rate of change of f at P.
 - (b) Find the rate of change of f at P in the direction of the origin.
- 4. Find the equation of the tangent plane to the surface $xy + z^2 = 7$ at the point (-2, 1, 3). (5)
- 5. Let $\vec{c}(t) = \langle 5t^2, \sqrt{t}, t + \ln t \rangle$ be a path in three dimensional space and suppose that $\vec{r}(t)$ is another path such that $\vec{r}(1) = \langle 2, 4, 3 \rangle$ and $\vec{r}'(1) = \langle 1, -2, -1 \rangle$. Compute

$$\frac{d}{dt} \left(\vec{c}(t) \cdot \vec{r}(t) \right) \Big|_{t=1}.$$

- 6. Let $f(x,y) = x^3 + y^3 12x 3y + 15$. Find the critical points and classify each one as a local maximum, local minimum, or saddle point. (10)
- 7. Let $f(x,y) = x^4 + y^4$. Find all critical points of f subject to the constraint $x^2 + y^2 = 4$ and compute the absolute maximum and absolute minimum values of f on the circle of radius 2 centered at the origin. (10)
- 8. Integrate the function f(x,y) = 2xy + 1 over the region $R = \{(x,y) : x \ge 0, y \ge 0, x + y \le 1\}.$ (10)
- 9. Evaluate the double integral $\iint_R 3y^2 dA$, where R is the region in the first quadrant of the xy-plane bounded by the curves $y = x^2$ and $y = x^{1/3}$.