Name: \qquad PID: \qquad

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- No calculators, tablets, phones, or other electronic devices are allowed during this exam. You may use one page of handwritten notes, but no books or other assistance.
(1 pt) 0 . Follow the instructions on this exam and any additional instructions given during the exam.
(4 pt) 1. The following is the graph of $y=f(x)$, where $f(x)$ is a third degree polynomial.

(a) On which interval or intervals is the first derivative $f^{\prime}(x)$ positive?
(b) On which interval or intervals is the second derivative $f^{\prime \prime}(x)$ negative?
(5 pt) 2. Find the value of a and b that make the function g is continuous.

$$
g(x)= \begin{cases}1 / x^{2} & \text { if } x<-2 \\ a x+b & \text { if }-2 \leq x \leq 4 \\ \sqrt{x} & \text { if } x>4\end{cases}
$$

(5 pt) 3. For the curve $y=\arctan \left(e^{x}\right)$, find an equation for the tangent line where $x=0$.
(5 pt) 4. Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ if $f(x)=\ln \left(x^{2}+1\right)$. What is the domain of f ?
(5 pt) 5. Let

$$
f(x)=\frac{x^{6}}{3}-\frac{x^{4}}{2}+\frac{2}{3} .
$$

(a) Find the critical points for the function f and identify each as a local maximum, local minimum, or neither.
(b) Find all points of inflection for the function f.
(5 pt) 6. In the theory of relativity, the mass of a particle with speed v is

$$
m=f(v)=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}},
$$

where m_{0} is the rest mass of the particle and c is the speed of light in a vacuum. Suppose that a particle having mass 1 at rest is moving according to the position function $s(t)=t \sin \left(\frac{\pi t}{4}\right)$.
(a) Compute the instantaneous velocity of the particle at time $t=2$.
(b) Compute the instantaneous acceleration of the particle at time $t=2$.
(c) Use parts (a) and (b) and the Chain Rule to compute $\frac{d m}{d t}$ at time $t=2$.
(5 pt) 7. Let f be a one-to-one differentiable function such that $f(3)=6$ and $f^{\prime}(3)=\pi$. Calculate the derivatives.
(a) $g^{\prime}(3)$ if $g(x)=(f(x))^{-1}$.
(b) $h^{\prime}(6)$ if $h(x)=f^{-1}(x)$.
(5 pt) 8. If $f(x)=\frac{\arctan (x)}{x}$ for $x \neq 0$, then what value should be assigned to $f(0)$ in order to make f a function that is continuous everywhere?
(5 pt) 9. A box with square base and no lid has volume 1 . What is the minimum surface area the box can have?
(5 pt) 10. Use implicit differentiation to find the slope of the line tangent to the ellipse $\frac{x^{2}}{2}-y^{2}=4$ at the point $(4,-2)$.

