HW 6 due Wed, OH today: 11:00-11:30, 4:00-4:30 Chapter 7 -Nutation ' For a group G, S=G, a EG define $aS = \{as : seS\}$ a+S Sta Sa = 2sa + se S3 $aSa' = {aSa' : SES3}$ in additive notestion ι ISI = number of elements in S Detn'i Let G group, H < G subgroup, a & G. • att is the left-coset of H containing a

a is called a coset representative of alt,
Ha is the right-coset of H containing a

a is called a coset representative of Hq.

Jubgrap
Len. 7.4: let Ge group, H
$$\leq$$
 G, $\alpha, b \in G$.
Then $\alpha H \stackrel{o}{=} bH \Leftrightarrow \alpha \stackrel{o}{=} bH \Leftrightarrow b^{-} \alpha \stackrel{o}{\in} H$
Furthermore, either $\alpha H = bH$ or $\alpha H \Lambda bH = \emptyset$.
(Strictivity Ha = Hb $\Leftrightarrow \alpha eHb \Leftrightarrow \alpha b^{-1} eH$)
(αd either Ha = Hb or Ha \cap Hb = \emptyset)
 $\mathcal{R}^{-1}(\bigcirc \Rightarrow \bigcirc)$ Assume $\alpha H = bH$. Since $e \in H$ we have
 $\alpha = \alpha e \in \alpha H = bH$
($\bigcirc \Rightarrow \bigcirc)$ Assume $\alpha \in bH$. Then there is hell with
 $\alpha = bh$. So $b^{-}a = h \in H$.
($\bigcirc \Rightarrow \bigcirc$) Assume $b^{-}a \in H$. Set $h_{0} = b^{-}a \in H$.
Notice $h_{0}^{-} = \alpha^{-1}b$.
($a H = bH$) For any hell we have since $h_{0}h \in H$
($a H = bH$) For any hell we have since $h_{0}h \in H$
($b H \leq \alpha H$) For any hell we have since $h_{0}h \in H$
($b H \leq \alpha H$) For any hell we have since $h_{0}h \in H$
($b H \leq \alpha H$) For any hell we have since $h_{0}h \in H$
($b H \leq \alpha H$) $b h = \alpha (a^{-}b)h = ah_{0}^{-1}h \in H$
Now we prove the (Furthermore).
Case 1: $\alpha H \cap bH = \emptyset$ Done.
Case 2: $\alpha H \cap bH = \emptyset$ Done.
Case 2: $\alpha H \cap bH = \emptyset$.
Pick and $c \in bH$.
By $\oslash \Rightarrow \oslash$, $c H = \alpha H$ and $c H = bH$.
(Therefore $\alpha H = bH$.

Lem. 7.B: The collection of left-cosets Eatt : a EG3 partitions G. Also latt = (HI for all a EG. (Similarly EHa: acG3 partitions G and) [Hal = [H] for all acG

Pf: Since ecH, we have a = ae EaH. So the union of the att (aEG) is equal to G. By lem 7. A the sets att (aEG) are disjoint when they are not equal. This shave that Eattige GB is a partition of G.

Laotly, latt = It since the map from It to att sending held to ahead is one-to-one and onto. I

Worning Generally, att = Ha. Havever...

 $lem 7.c: aH = Ha \iff aHa^{-1} = H$

Pf: Multiplication on the right by a' is a one-to-one operation that sends all to alla' and sends the to H.

 $Ex: Set H = \{ \alpha \in S_3 : \alpha(1) = 1 \} = \{ 2, (23) \}.$ H subgroup of Sz.

The left cosets of H are $EH = H = \frac{2}{5}E(23)^{\frac{3}{5}} = (23)H = \frac{2}{5}\alpha ES_3 : \alpha(1) = 1^{\frac{3}{5}}$ $(12)H = \frac{2}{5}(12), (123)^{\frac{3}{5}} = (123)H = \frac{2}{5}\alpha ES_3 : \alpha(1) = 2^{\frac{3}{5}}$ $(13)H = \frac{2}{5}(13), (132)^{\frac{3}{5}} = (132)H = \frac{2}{5}\alpha ES_3 : \alpha(1) = 3^{\frac{3}{5}}$

The right coses of H are $H_{\mathcal{E}} = H = \{ \epsilon, (23)\} = H(23) = \{ \alpha \in S_{\mathcal{F}} : \alpha(l) = l \}$ $H(12) = \frac{2}{6}(12)(132)^3 = H(132) = \frac{2}{6} \times \frac{2}{6} = \frac{3}{6}$ $H(13) = \{(13), (123)\} = H(123) = \{(123), (3)\} = \{$

Lagrange's Thm 7.1: If G is a finite group and H ≤ G is a Subgroup then It'l divides IGI. More over the number of distinct left (or right) lossets of H in G is IGI/

Called the index of H in G and is denoted [G:H].

Pf: let
$$r = |G:H| = # of distinct left cosets of H,$$

let a, H, a_2H, \dots, a_rH be the distinct
left cosets of H. Then by len T.B
 $a, H, \dots, cerH$ partition G so
 $|G| = |a, H| + |a_2H| + \dots + |a_rH|$
 $ten T.B$
 $|H| + |H| + \dots + |H|$
 $= r \cdot |H|.$
Therefore $|H| + |G|$ and
 $|G:H| = r = \frac{|G|}{|H|}.$