HoW 6 due We O,
OH today: 11:00-11:30, 4:00-4:30
Chapter y
Nutation: For a grape $G, S \subseteq G, a \in G$ define

$$
\begin{gathered}
a S=\{a s: s \in S\} \\
S a=\{s a: s \in S\} \\
a S a^{-1}=\left\{a s a^{-1}: s \in S\right\} \\
|S|=\text { number of elements } \\
\text { in } S
\end{gathered}
$$

$$
a+s
$$

Defn: Let G group, $H \leq G$ subgroup, $a \in G$.

- aH is the left-coset of H containing a
a is culled a coset representative of att,
- Ha is the right-coset of H containing a
a is called a coset representative of Ha .
subgroup
Lem. T.A: Let G group, $H \leqslant G, a, b \in G_{1}$
Then $a H \stackrel{(1)}{=} b H \Leftrightarrow a{ }^{(2)} b H \Longleftrightarrow b^{-1} a \in H$
Furtheermones either $a H=b H$ or $a H \cap b H=\varnothing$.
$\binom{$ Similarly $H a=H b \Leftrightarrow a \in H b \Leftrightarrow a b^{-1} \in H}{$ and either $H a=H b$ or $H a \cap H b=\varnothing}$
Pf: (1) \Rightarrow (2) Assume $a H=b H$. Since $e \in H$ we have

$$
a=a e \in a H=b H
$$

(2) \Rightarrow (3) Assume $a \in b H$. Then there is $h \in H$ with $a=b h$. So $b^{-1} a=h \in H$.
$(3) \Rightarrow$ (1)) Assume $b^{-1} a \in H$. Set $h_{0}=b^{-1} a \in H$.
Notice $h_{0}^{-1}=a^{-1} b$.
$(a H \subseteq b H)$ For any $h \in H$ we have since $h_{0} h \in H$

$$
a h=\left(b b^{-1}\right) a h=b\left(b^{-1} a\right) h=b h_{0} h \in b H
$$

(bHt $\subseteq a H)$ For any $h \in H$ we have since $h_{0}^{-1} h \in H$

$$
b h=\left(a a^{-1}\right) b h=a\left(a^{-1} b\right) h=a h_{0}^{-1} h \notin a H
$$

Now we prove the "Furthermore".
Case 1: $a H \cap b H=\varnothing$ Done.
Case 2: aH $\cap b H \neq \varnothing$.
Pick any $c \in a H \cap b H$.
Then eat and cebu.
$B y$ (2) $\Rightarrow 0, \quad c H=a H$ and $c H=b H$.
Therefore $a H=b H$.

Lem. 7.B: The collection of left-cosets \{alt: $a \in G\}$ partitions G. Also $|a t t|=|H|$ for all $a \in G$.
$\binom{$ Sunilaly $\{H a: a \in G\}$ partitions G and }{$|H a|=|H|$ for all $a \in G}$
Pf: Since $e \in H$, we have $a=a e \in a H$. So the union 'f the att $(a \in G)$ is equal to G. By lem T_{1} A the sets alt $(a \in G)$ are disjoint when they are not equal. This shaus that \{att: ae $G\}$ is a partition of G.

Lastly, $|a H|=|H|$ since the map from H to alt sending $h \in H$ to cheat is one-to-one and onto.

Warning: Generally, $a t \neq H a$. However...
Gm T.C: $a H=H a \Leftrightarrow a H a^{-1}=H$
Pf: Multiplication on the right by a^{-1} is a one-to-one operation that sends alt to aHta-1 and sends Ha to H.

Ex: Set $H=\left\{\alpha \in S_{3}: \alpha(1)=1\right\}=\{\varepsilon,(23)\}$. H subgroup of S_{3}.

The left cosets of H are

$$
\begin{aligned}
& \varepsilon H=H=\{\varepsilon,(23)\}=(23) H=\left\{\alpha \in S_{3}: \alpha(1)=1\right\} \\
& (12) H=\{(12),(123)\}=(123) H=\left\{\alpha \in S_{3}: \alpha(1)=2\right\} \\
& (13) H=\{(13),(132)\}=(132) H=\left\{\alpha \in S_{3}: \alpha(1)=3\right\}
\end{aligned}
$$

The right cosets of H are

$$
\begin{aligned}
& H \varepsilon=H=\{\varepsilon,(23)\}=H(23)=\left\{\alpha \in S_{3}: \alpha(1)=1\right\} \\
& H(12)=\{(12),(132)\}=H(132)=\left\{\alpha \in S_{3}: \alpha(2)=1\right\} \\
& H(13)=\{(13),(123)\}=H(123)=\left\{\alpha \in S_{3}: \alpha(3)=1\right\}
\end{aligned}
$$

Lagrange The 7.1:
If G is a finite group and $H \leqslant G$ is a Subgroup then $|H|$ divides $|G|$. More over the number of distinct left (or right) cosets of H in G is $|G| /|H|$
4
Called the index of H in G and is denoted |G:H|.

Pf: let $r=|G: H|=\#$ of distinct left cosets of H .
Let $a_{1} H, a_{2} H, \cdots, a_{1} H$ be the dis that lett corsets of $H_{\text {. Then }}$ by Len T.B $a_{1} H, \cdots, a r H$ partition G so

$$
\begin{aligned}
|G| & =\left|a_{1} H\right|+\left|a_{2} H\right|+\cdots+\left|a_{r} H\right| \\
\stackrel{l o n}{\text { lon }, ~} & =\underbrace{|H|+|H|+\cdots+|H|}_{r} \\
& =r \cdot|H| .
\end{aligned}
$$

Therefore $|H||G|$ and

$$
|G: H|=r=|G| /|H| .
$$

